, Volume 12, Issue 3, pp 267–273 | Cite as

Fibrillation Tendency of Cellulosic Fibers. Part 1: Effects of Swelling

  • Wangsun Zhang
  • Satoko Okubayashi
  • Thomas Bechtold


The fibrillation tendencies of various cellulosic fibers in aqueous solution containing alkali metal hydroxide and ethanol were evaluated with two specific parameters: the critical point of fibrillation (CPFconc.), that is a concentration of swelling agent where the fibrillation begins, and the ratio of initial increase in fibril number to increase in concentration of swelling agent (I i ). The CPFconc. and the I i are defined as fibrillation stability and fibrillation sensitivity to swelling agent, respectively. Lyocell fiber (CLY1) has the smallest CPFconc. and the largest I i , representing the lowest fibrillation stability and the highest fibrillation sensitivity, leading to the highest fibrillation tendency in CLY1 among the fibers tested. Although crosslinking improved fibrillation stability in lyocell as compared to modal, the fibrillation stability remained higher owing to the high water capacity and the high affinity for alkali. In alkali solution at the same concentration CLY1 fibrillation increased in the order of LiOH  > NaOH  > KOH. However, the plot of fibril number against solvent retention value of CLY1 in different alkaline solutions gives a slope of 110 count · g/cm3 regardless of alkali type, the critical degree of swelling for CLY1 with no fibrillation was 0.62 cm3/g in alkali solutions and 0.45 cm3/g in ethanol/water mixture.


Alkali metal hydroxide Ethanol Fibrillation Lyocell Solvent retention capacity Swelling Viscose 



weight of fibers after centrifugation (g)


weight of fibers after drying (g)


density of alkaline solution (g/cm3)


solvent retention value in alkaline solution (cm3/g)


solvent retention value in water (cm3/g)


solvent retention value in ethanol/water mixture (cm3/g)


initial increase in fibril number (count · l/mol)


pore volume (cm3/g)


critical point of fibrillation (mol/l)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brauneis, F., Eibl, M. 1998Finishing of knit goods produced from Lenzing Lyocell MelliandTextilberichte79155156Google Scholar
  2. Bredereck, K., Gruber, M., Otterbach, A., Schulz, F. 1996Die Hydrogelstruktur von Cellulosefasern und ihre Bedeutung fuer Fasereigenschaften und TextilveredlungTextilveredlung31194200Google Scholar
  3. Bredereck, K., Stefani, H.-W., Beringer, J., Schulz, F. 2003Alkali- und Fluessigammoniak-Behandlung von Lyocellfasern MelliandTextilberichte125864Google Scholar
  4. Chae, D.W., Choi, K.R., Kim, B.C. 2003Effect of cellulose pulp type on the mercerizing behavior and physical properties of lyocell fibersTextile Res. J.73541545Google Scholar
  5. Fink, H.-P., Weigel, P., Purz, H.J., Ganster, J. 2001Structure formation of regenerated cellulose materials from NMMO-solutionsProg. Polym. Sci.2614731524CrossRefGoogle Scholar
  6. Gruber, M. 1998Untersuchungen zur supramolekularen Struktur und Farbstoffadsorption von CellulosefasernInstitut fuer Textil- und FaserchemieUniversitaet StuttgartStuttgartGermanyPh.D. Thesis.Google Scholar
  7. Ibbett, R.N., Hsieh, Y.-L. 2001Effect of fiber swelling on the structure of lyocell fabricsTextile Res. J.71164172Google Scholar
  8. Kielland, J. 1937Individual activity coefficient of cations in aqueous solutionsJ. Am. Chem. Soc.5916751678CrossRefGoogle Scholar
  9. Kongdee, A., Bechtold, T., Burtscher, E., Scheinecker, E. 2004The influence of wet/dry treatment on pore structure – the correlation of pore parameters, water retention and moisture regain valuesCarbohydr. Polym.573944CrossRefGoogle Scholar
  10. Lenz, J., Schurz, J., Wrentschur, E. 1993Properties and structure of solvent-spun and viscose-type fibers in the swollen stateColloid Polym. Sci.271460468CrossRefGoogle Scholar
  11. Lenz, J., Schurz, J., Wrentschur, E. 1992Comparative characterization of solvent spun cellulose and high wet modulus viscose fibres by their long periodsActa Polym.43307CrossRefGoogle Scholar
  12. Nechwatal, A., Nicolai, M., Mieck, K.-P. 1996Crosslinking reactions of spun-wet NMMO fibers and theor influence on fibrillabilityTextile Chem. Colorist282427Google Scholar
  13. Nechwatal, A., Nicolai, M., Mieck, K.-P. 1996Textile crosslinking reactions to reduce the fibrillation tendency of lyocell fibersTextile Res. J.66575580Google Scholar
  14. Nicolai, M., Nechwatal, A., Mieck, K.-P. 1998Modified fibrillation behavior of solvent-spuncellulose fibers by the reaction with reactive dyesAngew. Makromol. Chem.2562127CrossRefGoogle Scholar
  15. Okubayashi S., Griesser U. and Bechtold T., 2005. A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr. Polym. in press.Google Scholar
  16. Okubayashi S. and Bechtold T., in press. A pilling mechanism of man-made cellulosic fabrics – effects of fibrillation. Textile Res. J.Google Scholar
  17. Rohrer, C., Retzl, P., Firgo, H. 2001Lyocell LF – profile of a fibrillation-free fibre from LenzingLenzinger Berichte807581Google Scholar
  18. Taylor J.M. 1991.Fibre treatment. European Patent Application, 0,538,977 A1, 18 pp.Google Scholar
  19. Toth, T., Borsa, J., Reicher, J., Sally, P., Sajo, I., Tanczos, I.,  et al. 2003Mercerization of cotton with tetramethylammonium hydroxideTextile Res. J.73273278Google Scholar
  20. Zhang, W., Okubayashi, S., Bechtold, T. 2003Modification of fibrillation by textile chemical processingLenzinger Berichte825863Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Wangsun Zhang
    • 1
  • Satoko Okubayashi
    • 1
  • Thomas Bechtold
    • 1
  1. 1.Christian-Doppler Laboratory of Textile and Fiber Chemistry of Cellulosics, Institute of Textile ChemistryTextile Physics of Leopold-Franzens-University InnsbruckDornbirnAustria

Personalised recommendations