, 12:185 | Cite as

Analysis of the topochemical effects of dielectric-barrier discharge on cellulosic fibers

  • Lorraine C. Vander Wielen
  • Thomas Elder
  • Arthur J. Ragauskas


This study investigates the fundamental topochemical effects of dielectric-barrier discharge treatment on bleached chemical pulp and unbleached mechanical pulp fiber surfaces. Fibers were treated with various levels of dielectric-barrier discharge treatment ranging from 0 to 9.27 kW/m2/min. Changes to the fiber surface topochemistry were investigated by atomic force microscopy (AFM). The AFM studies were complemented by inverse gas chromatography (IGC), contact angle evaluation, poly-electrolyte titration, viscosity testing and determination of water retention value (WRV). The static coefficient of friction and zero-span tensile index of sheets were also evaluated. Low dielectric-barrier discharge treatment levels resulted in increased surface energy and roughness. Fibers treated at high applied power levels showed surface energies and roughness levels near that of reference samples as well as evidence of degradation and decreased fiber swelling.


AFM Dielectric-barrier discharge IGC Surface roughness Viscosity Water retention value 



atomic force microscopy


bleached kraft pulp


inverse gas chromatography


thermomechanical pulp


water retention value


  1. Back E.L. and Danielsson S. 1987. Oxidative activation of wood and paper surfaces for bonding and for paint adhesion. Nord. Pulp Pap. Res. J. 53–62.Google Scholar
  2. Barzyk, D., Page, D.H., Ragauskas, A.J. 1997Acidic-group topochemistry and fiber-to-fiber specific bond strengthJ. Pulp Pap. Sci.23J59J61Google Scholar
  3. Belgacem, M.N., Czeremuszkin, G., Sapieha, S. 1995Surface characterization of cellulose fibers by XPS and inverse gas chromatographyCellulose2145157Google Scholar
  4. Bezigian, T. 1992The effect of corona discharge onto polymer filmsTappi J.75139141Google Scholar
  5. Böras, L., Gatenholm, P. 1999Surface composition and morphology of CTMP fibersHolzforschung53188194Google Scholar
  6. Brown, P.F., Swanson, J.W. 1971Wetting properties of cellulose treated in a corona dischargeTappi J.54201208Google Scholar
  7. Bruck, H.A., Evans, J.J., Peterson, M.L. 2002The role of mechanics in biological and biologically inspired materialsExp. Mech.42361371Google Scholar
  8. Carlsson, C., Ström, G., Annergren, G. 1995Water sorption and surface composition of untreated or oxygen plasma-treated chemical pulpsNord. Pulp Pap. Res. J.101723Google Scholar
  9. Chen, D., McMorran, D. 1999Use of the DCA technique to measure the wettability of porous materialsAm. Lab.313537Google Scholar
  10. Cramm, R.H., Bibee, D.V. 1982Theory and practice of corona treatment for improving adhesionTappi J.657578Google Scholar
  11. Danino, D., Marmur, A. 1994Radial capillary penetration in to paper: Limited and unlimited liquid reservoirsJ. Colloid Interf. Sci.166245250Google Scholar
  12. Egli, W., Kraus, M. 2003Shortest paths in chemical kinetic applicationsPhys. Chem. Chem. Phys.539163920Google Scholar
  13. Felix, J.M., Gatenholm, P. 1993Characterization of cellulose fibers using inverse gas chromatographyNord. Pulp Pap. Res. J.8200203Google Scholar
  14. Garnier, G., Glasser, W.G. 1994Measurement of the surface free energy of amorphous cellulose by alkane adsorption: a critical evaluation of inverse gas chromatographyLangmuir46168180Google Scholar
  15. Glasser, W.G. 1994Chemical products from lignocellulosicsMRS Bull.194648Google Scholar
  16. Goossens O., Dekempeneer E., Vangeneugden D. and de Leest R. 2001. Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation. Surf. Coat. Tech. 142–144: 474–481.Google Scholar
  17. Goring, D.A.I. 1967Surface modification of cellulose in a corona dischargePulp Pap. Mag. Can.68T372T376Google Scholar
  18. Gurnagul, N., Ouchi, M.D., Dunlop-Jones, N., Sparkes, D.G., Wearing, J.T. 1992Factors affecting the coefficient of friction of paperJ. Appl. Poly. Sci.46805814Google Scholar
  19. Gustafsson, J., Ciovica, L., Peltonen, J. 2003The ultrastructure of spruce kraft pulps studies by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS)Polymer44661670Google Scholar
  20. Hajnos, M., Jozefaciuk, G., Sokolowska, Z., Greiffenhagen, A., Wessolek, G. 2003Water storagesurface and the structural properties of sandy forest humus horizonsJ Plant Nutr. Soil Sci.166625634Google Scholar
  21. Hanley, S.J., Gray, D.G. 1994Atomic force microscopy images of black spruce wood sections and pulp fibersHolzforschung482934CrossRefGoogle Scholar
  22. Hanley, S.J., Gray, D.G. 1999AFM images in air and water of kraft pulp fibersJ. Pulp Pap. Sci.25196200Google Scholar
  23. Henriksson, Å, Gatenholm, P. 2001Controlled assembly of glucoronoxylans onto cellulose fibersHolzforschung55494502Google Scholar
  24. Hodgson, K.T., Berg, J.T. 1988Wettability of single wood fibers and their relationship to absorbencyWood Fiber Sci.20317Google Scholar
  25. Hoecker, F., Karger-Kocsis, J. 1996Surface energetics of carbon fibers and its effect on the mechanical performance of CF/EP compositesJ. Appl. Polym. Sci.59139153Google Scholar
  26. Jacob, P.N., Berg, J.C. 1994Acid-base surface energy characterization of microcrystalline cellulose and two wood pulp fiber types using inverse gas chromatographyLangmuir1030863093Google Scholar
  27. Kemppi, A. 1996Studies on adhesion between paper and low-density polyethylene’s influence on the natural components in paperPap. Puu78610617Google Scholar
  28. Kim, C.Y., Suranyi, G., Goring, D.A.I. 1970Corona induced bonding of synthetic polymers to celluloseJ. Polym. Sci.30533542Google Scholar
  29. Kogelschatz, U. 2003Filamentary and diffuse barrier discharges: their history, discharge physics and industrial applicationsPlasma Chem. Plasma Proc.23146Google Scholar
  30. Laine, J., Lindström, T., Nordmark, G.G., Risinger, G. 2000Studies on the topochemical modification of cellulosic fibers, Part 1. Chemical conditions for the attachment of carboxylmethyl cellulose onto fibersNord. Pulp Pap. Res. J.15520526Google Scholar
  31. Lui, F.P., Rials, T.G. 1998Relationship of wood surface energy to surface compositionLangmuir14536541Google Scholar
  32. Mahlberg, R., Niemi, J.E.-M., Denes, F.S., Rowell, R.M. 1999Application of AFM to the adhesion studies of oxygen-plasma-treated polypropylene and lignocellulosicsLangmuir1529852992Google Scholar
  33. Naidis, G.V. 1997Modeling of plasma chemical processes in pulsed corona dischargesJ. Phys. D: Appl. Phys.3012141218Google Scholar
  34. Niemi, H., Paulapuro, H., Mahlberg, R. 2002Review: application of scanning probe microscopy to woodfiber and paper researchPap. Puu84389406Google Scholar
  35. Norris, D.A., Puri, N., Labib, M.E., Sinko, P.J. 1999Determining the absolute surface hydrophobicity of microparticles using thin layer wickingJ Control. Release59173185Google Scholar
  36. Page, D.H. 1985The mechanism of strength development of dried pulps by beatingSvensk Papperstid.3R30R35Google Scholar
  37. Pillai, K.M., Advani, S.G. 1996Wicking across a fiber bankJ. Colloid Interf. Sci.183100110Google Scholar
  38. Rhen, P., Viöl, W. 2003Dielectric barrier discharge treatments at atmospheric pressure for wood surface modificationHolz als Roh- und Werkstoff61145150Google Scholar
  39. Roth, J.R. 2001Industrial Plasma Engineering. Applications to Nonthermal Plasma Processing Vol. 2.Institute of Physics PublishingBristol, UK122125Google Scholar
  40. Sabharwal, H.S., Denes, F., Nielssen, L., Young, R.A. 1993Free-radical formation in jute from argon plasma treatmentJ. Agric. Food Chem.4122022207Google Scholar
  41. Sakata, I., Morita, M., Furuichi, H., Kawaguchi, Y. 1991Improvement of ply bond strength of paperboard by corona treatmentJ. Appl. Polym. Sci.4220992104Google Scholar
  42. Santos, J.M.R.C.A., Gil, M.H., Portugal, A., Guthrie, J.T. 2001Characterization of the surface of a cellulosic multi-purpose office paper by inverse gas chromatographyCellulose8217224Google Scholar
  43. Seeböck, R., Esrom, H., Charbonnier, M., Romand, M. 2000Modification of polyimide in barrier discharge air plasmas: chemical and morphological effectsPlasmas Polym.5103118Google Scholar
  44. Seth, R.S. 1999Beating and refining response of some reinforcement pulpsTappi J.82147151Google Scholar
  45. Shahin, M.M. 1966Mass-spectrometric studies of corona discharges in air at atmospheric pressuresJ. Chem. Phys.4526002605Google Scholar
  46. Shi, S.Q., Tze, W.T., Gardner, D.J. 2000A new model to determine contact angles on swelling polymer particles by the column wicking methodJ. Adhesion Sci. Technol.14301314Google Scholar
  47. Shultz, J., Lavielle, L. 1989Inverse Gas ChromatographyLloyd, D.R.Ward, T.C.Schrieber, H.P.Pizaña, C.C. eds. ACS Symposium Series 391American Chemical SocietyWashington, DC185202Google Scholar
  48. Simola-Gustafsson, J., Hortling, B., Peltonen, J. 2001Scanning probe microscopy and enhanced data analysis on lignin and elemental-chlorine free or oxygen-delignified pine kraft pulpColloid Polym. Sci.279221231Google Scholar
  49. Simola, J., Malkavaara, P., Peltonen, J. 2000Scanning probe microscopy of pine and birch kraft pulp fibersPolymer4121212126Google Scholar
  50. Snell, R., Groom, L.H., Rials, T.G. 2001Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopyHolzforschung55511520Google Scholar
  51. Sun, C.Q., Zhang, D., Wadsworth, L.C. 1999Corona treatment of polyolefin films – A reviewAdv. Polym. Tech.18171180Google Scholar
  52. Suranyi, G., Gray, D.G., Goring, D.A.I. 1980The effect of corona discharge on wettability of aged corrugating mediumTappi J.63153154Google Scholar
  53. TAPPI Test Methods. 1996. Tappi Press, AtlantaGA.Google Scholar
  54. TAPPI Useful Methods 1991. Tappi Press, AtlantaGA. p. 54–56.Google Scholar
  55. Tshabalala, M., Denes, A., Williams, S. 1999Correlation of water vapor adsorption behavior of wood with surface thermodynamic propertiesJ. Appl. Polym. Sci.73399407Google Scholar
  56. Vander Wielen L.C. and Ragauskas A.J. 2003. Dielectric discharge: a concatenated approach to fiber modification. Proceedings of the 12th International Symposium on Wood and Pulping Chemistry, Vol. 1, Madison, WI, pp. 272–276.Google Scholar
  57. Vander Wielen L.C., Page D.H. and Ragauskas A.J. 2003. Impact of dielectric-barrier discharge on bonding. International Paper Physics Conference Pre-prints, PAPTAC, Victoriapp. 347–349.Google Scholar
  58. Vander Wielen, L.C., Ragauskas, A.J. 2004Grafting of acrylamide onto cellulosic fibers via dielectric-barrier dischargeEur. Polym. J.40477482Google Scholar
  59. Venselaar, J. 2003Sustainable growth and chemical engineeringChem. Eng. Technol.26868874Google Scholar
  60. Viikari L., Harkki T., Niku-Paavlova M.L., Buchert J. and Popplus-Levlin K. 1998. Oxidative enzymes for fiber modification. Proceedings of the 7th International Conference on Biotechnology in the Pulp and Paper Industry, Vancouver, Canada, pp. A121-A124Google Scholar
  61. Wägberg, L., Forsberg, S., Johansson, A., Juntti, P. 2002Engineering of fiber surface properties by application of the polyelectrolyte multilayer concept. Part 1. Modification of paper strengthJ. Pulp Pap. Sci.8222228Google Scholar
  62. Wägberg, L., Odberg, L., Glad-Nordmark, G. 1989Charge determination of porous substrates by polyelectrolyte absorptionNord. Pulp Pap. Res. J.27176Google Scholar
  63. Walinder, M., Gardner, D. 2000Surface energy of extracted and non-extracted Norway spruce wood particles studied by inverse gas chromatography (IGC)Wood Fiber Sci.32478488Google Scholar
  64. Washburn, E.W. 1921Dynamics of capillary flowPhys. Rev.17374375Google Scholar
  65. Winspear, S. 1979The characterization of liquid acceptance by paperAppita332532Google Scholar
  66. Wistara, N., Zhang, X., Young, R.A. 1999Properties and treatments of pulps from recycled paper. Part II. Surface properties and crystallinity of fibers and finesCellulose6325428Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Lorraine C. Vander Wielen
    • 1
  • Thomas Elder
    • 2
  • Arthur J. Ragauskas
    • 1
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.USDA-Forest ServicePinevilleUSA

Personalised recommendations