, Volume 12, Issue 2, pp 197–208 | Cite as

Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 2: Isolation and identification of chromophores

  • Thomas Rosenau
  • Antje Potthast
  • Walter Milacher
  • Immanuel Adorjan
  • Andreas Hofinger
  • Paul Kosma


The Lyocell process is a modern ‘green’ industrial fiber-making technology, which employs N-methylmorpholine-N-oxide monohydrate (NMMO) to directly dissolve cellulose. One problem in Lyocell processing is the discoloration of the spinning dope due to chemical side reactions. Two different methods were elaborated to isolate chromophores, which are present in minute amounts only, from Lyocell fibers, the first one using hydrogen chloride in alcoholic solution, the second one employing boron trifluoride – acetic acid complex. Several chromophores were unambiguously identified by a combination of analytical techniques and comparison to authentic samples. Carbohydrate condensation products, such as catechols, were shown to dominate in early phases of chromophore formation. In later stages, these initial chromophores undergo further condensation reactions with degradation products of NMMO and NMMO itself, leading to nitrogen-containing heterocycles and quinoid products, among others. The incorporation of nitrogen into the chromophores and thus the participation of the solvent in chromophore formation were proven.


Boron trifluoride – acetic acid complex Chromophores Lyocell NMMO Reaction mechanism Trace analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, H., Wörth, J. 1977Michigazon – ein neues Phenoxazon aus Streptomyces michiganensis – Konstitutionsermittlung und SyntheseChem. Ber.1101222Google Scholar
  2. Adorjan, I., Potthast, A., Rosenau, T., Sixta, H., Kosma, P. 2005Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 1: Studies on model compounds and pulpsCellulose125157Google Scholar
  3. Brassard, P., L’Ecuyer, P. 1958Arylation of quinones by diazonium salts. IV. Reaction of these salts with 2,5-dihydroxy-p-benzoquinone and the synthesis of 3-hydroxy-2,5-diphenyl-p-benzoquinoneCan. J. Chem.361346Google Scholar
  4. Brockmann, H., Greve, H., Waldmüller, W. 1971Dimerisierung und cyclo-Trimerisierung von Naphthazarin und Ber.10414361454Google Scholar
  5. Butenandt, A., Biekert, E., Neubert, G. 1957Über 3-Hydroxy-5-acetyl-phenoxazon-(2) und 1.6-Diacetyl-triphendioxazin. Ein neuer Weg zur Darstellung von PhenoxazonenJustus Liebigs Ann. Chem.6027279Google Scholar
  6. Funaoka, M., Abe, I. 1978The reactions of lignin under the presence of phenol and boron trifluoride. II. The effect of methoxyl group and ethylenic double bond on the formation of catecholMokuzai Gakkaishi24892897Google Scholar
  7. Funaoka, M., Abe, I. 1985Degradation of protolignin by the nucleus-exchange methodMokuzai Gakkaishi31671676Google Scholar
  8. Crosby, A.H., Lutz, R.E. 1956A study of an oxidative-amination method for the synthesis of aminoquinonesJ. Am. Chem. Soc.7812331235Google Scholar
  9. Flaig, W., Ploetz, T., Biergans, H. 1955Zur Kenntnis der Huminsäuren, XIV. Bildung und Reaktionen einiger Hydroxy-chinoneJustus Liebigs Ann. Chem.597196211Google Scholar
  10. Gerrard, J.A. 2002New aspects of an ageing chemistry – recent developments concerning the Maillard reactionAust. J. Chem.55299310Google Scholar
  11. Ikan, R. eds. 1997The Maillard Reaction.John Wiley & SonsNew YorkGoogle Scholar
  12. Jones, R.G., Shonle, H.A. 1946The preparation of some 9-diethylaminoalkylphenazinesJ. Am. Chem. Soc.6822462247Google Scholar
  13. Ledl, F., Schleicher, E. 1990New aspects of the Maillard reaction in foods and in the human bodyAngew. Chem. Int. Ed. Engl.29565706Google Scholar
  14. Lei, Z., Jervis, J., Helm, R.F. 2001Use of methanolysis for the determination of total ellagic and gallic acid contents of wood and food productsJ. Agric. Food Chem.4911651168Google Scholar
  15. Loudon J.D. and Ogg J. 1955. 2:3-Dihydro-3-oxobenz-1:4-oxazines. J. Chem. Soc.: 739--743 Google Scholar
  16. Manthey, M.K., Pyne, S.G., Truscott, R.G.W. 1989Addition of aliphatic and aromatic amines to catechols in aqueous solution under oxidizing conditionsAust. J. Chem.42365373CrossRefGoogle Scholar
  17. Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M.C., Lerici, C.R. 2000Review of non-enzymatic browning and antioxidant capacity in processed foodsTrends Food Sci. Technol.11340346Google Scholar
  18. Martins, S.I.F.S., Jongen, W.M.F., Boekel, M.A.J.S. 2000A review of Maillard reaction in food and implications to kinetic modelingTrends Food Sci. Technol.11364373Google Scholar
  19. Matsuoka M., Takei T. and Kitao T. 1979. Selective butylamination of 5,8-dihydroxy-1,4-naphthoquinone promoted by copper salts. Chem. Lett.: 627 Google Scholar
  20. Matsuoka, M., Takagi, K., Hamano, K., Kitao, T. 1984Novel ring-closure reaction between quinines and diaminesHeterocycles21707CrossRefGoogle Scholar
  21. Olsson, K., Pernemalm, P.-A., Theander, O. 1978Formation of aromatic compounds from carbohydrates. Part 7Acta Chem. Scand.B32249256Google Scholar
  22. Popoff, T., Theander, O. 1972Formation of aromatic compounds from carbohydrates. Part 1Carbohydr. Res.22135149Google Scholar
  23. Popoff, T., Theander, O. 1976aFormation of aromatic compounds from carbohydrates. Part 3Acta Chem. Scand.B30397402Google Scholar
  24. Popoff, T., Theander, O. 1976bFormation of aromatic compounds from carbohydrates. Part 4Acta Chem. Scand.B30705710Google Scholar
  25. Popoff, T., Theander, O., Westerlund, E. 1978Formation of aromatic compounds from carbohydrates. Part 6Acta Chem. Scand.B3217Google Scholar
  26. Porretta, S. 1992Chromatographic analysis of Maillard reaction productsJ. Chromatogr. A624211219Google Scholar
  27. Rao, T.V.P., Venkateswarlu, V. 1965Chemical examination of Embelia ribes-VII. Synthesis of some new N-bis(anhydrobenzoquinones)Tetrahedron21389390Google Scholar
  28. Rosenau, T., Potthast, A., Sixta, H., Kosma, P. 2001The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process)Prog. Polym. Sci.2617631837Google Scholar
  29. Rosenau, T., Potthast, A., Adorjan, I., Hofinger, A., Sixta, H., Firgo, H., Kosma, P. 2002aCellulose solutions in N-methylmorpholine-N-oxide (NMMO) – Degradation processes and stabilizersCellulose9283291Google Scholar
  30. Rosenau T., Potthast A. and Kosma P. 2002b. The chemistry of the system cellulose/N-methylmorpholine-N-oxide (Lyocell process). Preprints ICC 2002, 1st International Cellulose ConferenceKyotoJapan, Nov. 6–8, 2002, pp. 29–30, plenary lecture. Google Scholar
  31. Rosenau, T., Potthast, A., Elder, T., Lange, T., Sixta, H., Kosma, P. 2002cSynthesis and oxidation behavior of 2,4,5,7,8-pentamethyl-4H-1,3-benzodioxin-6-ol, a multi-functional oxa-tocopherol type antioxidantJ. Org. Chem.6736073614Google Scholar
  32. Simpson, D.J., Unkefer, C.J., Whaley, T.W., Marrone, B.L. 1991A mechanism-based fluorogenic probe for the cytochrome P-450 cholesterol side chain cleavage enzymeJ. Org. Chem.5653915396Google Scholar
  33. Theander, O., Nelson, D.A. 1978Aqueous, high-temperature transformation of carbohydrates relative to utilization of biomassAdv. Carbohydr. Chem. Biochem.46273326CrossRefGoogle Scholar
  34. Theander, O., Westerlund, E. 1980Formation of aromatic compounds from carbohydrates. Part 8Acta Chem. Scand.B34701705Google Scholar
  35. Weygand, F., Rupp, W. 1950Eine neue Synthese von Chinoliniumverbindungen, 1. MitteilungChem. Ber.83455458Google Scholar
  36. Weygand, F., Frank, E. 1951Chinoliniumverbindungen, 2. MitteilungChem. Ber.84619Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Thomas Rosenau
    • 1
  • Antje Potthast
    • 1
  • Walter Milacher
    • 2
  • Immanuel Adorjan
    • 1
  • Andreas Hofinger
    • 1
  • Paul Kosma
    • 1
  1. 1.Christian-Doppler-LaboratoryUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Lenzing AG, R & DLenzingAustria

Personalised recommendations