Skip to main content
Log in

Periodic solutions of a generalized Sitnikov problem

Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of determining whether a global family of even periodic solutions of a generalized Sitnikov problem, which emerges from a circular generalized Sitnikov problem, continues for all values of eccentricity in [0, 1) or ends in the equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Alekseev, V.M.: Quasirandom dynamical systems. II. One-dimensional nonlinear oscillations in a field with periodic perturbation. Math. USSR-Sbornik 6(4), 505–560 (1968)

    Article  Google Scholar 

  • Alfaro, J.M., Chiralt, C.: Invariant rotational curves in Sitnikov’s problem. Celest. Mech. Dyn. Astron. 55(4), 351–367 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Belbruno, E., Llibre, J., Ollé, M.: On the families of periodic orbits which bifurcate from the circular Sitnikov motions. Celest. Mech. Dyn. Astron. 60(1), 99–129 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Beltritti, G., Mazzone, F., Oviedo, M.: The Sitnikov problem for several primary bodies configurations. Celest. Mech. Dyn. Astron. 130(7), 45 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Bountis, T., Papadakis, K.: The stability of vertical motion in the n-body circular Sitnikov problem. Celest. Mech. Dyn. Astron. 104(1), 205–225 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Corbera, M., Llibre, J.: Periodic orbits of the Sitnikov problem via a Poincaré map. Celest. Mech. Dyn. Astron. 77(4), 273–303 (2000)

    Article  ADS  Google Scholar 

  • Corbera, M., Llibre, J.: On symmetric periodic orbits of the elliptic Sitnikov problem via the analytic continuation method. Contemp. Math. 292, 91–128 (2002)

    Article  MathSciNet  Google Scholar 

  • Dvorak, R.: Numerical results to the Sitnikov-problem. Celest. Mech. Dyn. Astron. 56(1–2), 71–80 (1993)

    Article  ADS  Google Scholar 

  • Hartman, P.: Ordinary differential equations, Classics in Applied Mathematics, vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Corrected reprint of the second (1982) edition

  • Jiménez-Lara, L., Escalona-Buendía, A.: Symmetries and bifurcations in the Sitnikov problem. Celest. Mech. Dyn. Astron. 79(2), 97–117 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • Llibre, J., Ortega, R.: On the families of periodic orbits of the Sitnikov problem. SIAM J. Appl. Dyn. Syst. 7(2), 561–576 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Llibre, J., Simó, C.: Estudio cualitativo del problema de Sitnikov. Publicacions de la Secció de Matemàtiques, pp. 49–71(1980)

  • Llibre, J., Moeckel, R., Simó, C.: Central configurations, periodic orbits, and Hamiltonian systems. Advanced Courses in Mathematics - CRM Barcelona. Birkhauser (2015)

  • Magnus, W., Winkler, S.: Hill’s Equation. Courier Corporation, Chelmsford (2013)

    MATH  Google Scholar 

  • Marchesin, M., Vidal, C.: Spatial restricted rhomboidal five-body problem and horizontal stability of its periodic solutions. Celest. Mech. Dyn. Astron. 115(3), 261–279 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Moser, J.: Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics, Annals Mathematics Studies, vol. 1. Princeton University Press, Princeton (1973)

    Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Ortega, R.: Symmetric periodic solutions in the Sitnikov problem. Archiv der Mathematik 107(4), 405–412 (2016)

    Article  MathSciNet  Google Scholar 

  • Ortega, R., Rivera, A.: Global bifurcations from the center of mass in the Sitnikov problem. Discrete Contin. Dyn. Syst. B 14(2), 719–732 (2010)

    Article  MathSciNet  Google Scholar 

  • Pandey, L.P., Ahmad, I.: Periodic orbits and bifurcations in the Sitnikov four-body problem when all primaries are oblate. Astrophys. Space Sci. 345(1), 73–83 (2013)

    Article  ADS  Google Scholar 

  • Perdios, E., Markellos, V.V.: Stability and bifurcations of Sitnikov motions. Celest. Mech. Dyn. Astron. 42(1–4), 187–200 (1987)

    Article  MathSciNet  Google Scholar 

  • Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7(3), 487–513 (1971)

    Article  MathSciNet  Google Scholar 

  • Rivera, A.: Periodic solutions in the generalized Sitnikov \((n+1)\)-body problem. SIAM J. Appl. Dyn. Syst. 12(3), 1515–1540 (2013)

    Article  MathSciNet  Google Scholar 

  • Rivera, A., Andrés, M.: Bifurcación de soluciones periódicas en el problema de Sitnikov. Universidad de Granada, Granada (2012)

    Google Scholar 

  • Sitnikov, K.: The existence of oscillatory motions in the three-body problem. Dokl. Akad. Nauk SSSR 133, 303–306 (1960)

    MathSciNet  MATH  Google Scholar 

  • Soulis, P.S., Papadakis, K.E., Bountis, T.: Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. 100(4), 251–266 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Zanini, C.: Rotation numbers, eigenvalues, and the Poincaré–Birkhoff theorem. J. Math. Anal. Appl. 279(1), 290–307 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gastón Beltritti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we enunciate and demonstrate some technical lemmas, which deal with Taylor series of \(\sqrt{q_\lambda (u,e)}\) and \(\int _{0}^{\pi }\sqrt{q_\lambda (u,e)}\mathrm{d}u\) and are used to demonstrate other results of the article.

Before enunciating the first lemma, it should be noted the definition of combinatory number, \(\begin{pmatrix} \gamma \\ n \end{pmatrix}:=\frac{\prod _{i=1}^{n}(\gamma -i+1)}{n!}\), where \(\gamma \in {\mathbb {R}}\) and \(n\in {\mathbb {N}}\).

Lemma 6

Let \(q_\lambda (u,e)\) be the function defined in (16). Then, for \(u \in (0,\pi )\), we have that

$$\begin{aligned} \sqrt{q_\lambda (u,e)}=\sqrt{8\lambda }\sum _{l=0}^{\infty }c_{\lambda ,l}(u)e^{l}, \end{aligned}$$

where

$$\begin{aligned}&c_{\lambda ,l}(u)=\sum _{j=0}^{\left[ \frac{l}{2}\right] }\sum _{k=0}^{l-2j}\begin{pmatrix} \frac{1}{2}-j\\ k \end{pmatrix}b_\lambda ^k(u)\cos ^{l-k-2j}(u)\begin{pmatrix} \frac{1}{2}\\ j \end{pmatrix}a_\lambda ^{j}(u), \end{aligned}$$
(32)

with \(a_\lambda (u)=\frac{\cos ^2(u)-3}{32\lambda }\), \(b_\lambda (u)=-\frac{32\lambda -2}{32\lambda }\cos (u)\).

Proof

Let us first observe that

$$\begin{aligned} \sqrt{q_\lambda (u,e)}= & {} \frac{1}{2}\frac{\sqrt{32\lambda -(32\lambda -2)\cos (u)e+(\cos ^2(u)-3)e^2}}{1-e\cos (u)}\\= & {} \sqrt{8\lambda }\frac{\sqrt{1+b_\lambda (u)e+a_\lambda (u)e^2}}{1-e\cos (u)} \end{aligned}$$

where \(a_\lambda (u)=\frac{\cos ^2(u)-3}{32\lambda }\) and \(b_\lambda (u)=-\frac{32\lambda -2}{32\lambda }\cos (u)\). As \(\sqrt{1+x}=\sum _{i=0}^{\infty }\begin{pmatrix} \frac{1}{2}\\ i \end{pmatrix}x^i\) for all \(-1<x< 1\), we have that

$$\begin{aligned} \sqrt{q_\lambda (u,e)}=\sqrt{8\lambda }f_\lambda (u,e)\sum _{n=0}^{\infty }\cos ^n(u)e^n, \end{aligned}$$

where \(f_\lambda (u,e):=\sum _{n=0}^{\infty }\begin{pmatrix} \frac{1}{2}\\ n \end{pmatrix}e^n(b_\lambda (u)+ea_\lambda (u))^n\).

Since \(\sqrt{1+x}\) is analytic in \((-1,1)\) and \(b_\lambda (u)e+a_\lambda (u)e^2\) is analytic, as a function of e in \({\mathbb {R}}\), we have that, for every \(u\in (0,\pi )\), \(\sqrt{1+b_\lambda (u)e+a_\lambda (u)e^2}=f_\lambda (u,e)\) is analytic, as a function of e, in \((-1,1)\). Then, for \(e\in [0,1)\)

$$\begin{aligned} f_\lambda (u,e)=\sum _{n=0}^{\infty }\frac{\partial ^nf_\lambda (u,0)}{\partial e^n}\frac{e^n}{n!}. \end{aligned}$$

Let us calculate \(\frac{\partial ^nf_\lambda (u,0)}{\partial e^n}\).

$$\begin{aligned} \frac{\partial ^nf_\lambda (u,0)}{\partial e^n}= & {} \sum _{m=\left[ \frac{n+1}{2}\right] }^{n}\begin{pmatrix} \frac{1}{2}\\ m \end{pmatrix}\frac{\partial ^n}{\partial e^n}(e^m(b_\lambda (u)+ea_\lambda (u))^m)\Big |_{e=0}\\= & {} \sum _{m=\left[ \frac{n+1}{2}\right] }^{n}\begin{pmatrix} \frac{1}{2}\\ m \end{pmatrix}\sum _{i=0}^{n} \begin{pmatrix} n\\ i \end{pmatrix}\left( \frac{\partial ^ie^m}{\partial e^i}\frac{\partial ^{n-i}}{\partial e^{n-i}}(b_\lambda (u)+ea_\lambda (u))^m\right) \bigg |_{e=0}\\= & {} \sum _{m=\left[ \frac{n+1}{2}\right] }^{n}\begin{pmatrix} \frac{1}{2}\\ m \end{pmatrix} \begin{pmatrix} n\\ m \end{pmatrix}\left( \frac{\partial ^me^m}{\partial e^m}\frac{\partial ^{n-m}}{\partial e^{n-m}}(b_\lambda (u)+ea_\lambda (u))^m\right) \bigg |_{e=0}\\= & {} \sum _{m=\left[ \frac{n+1}{2}\right] }^{n}\begin{pmatrix} \frac{1}{2}\\ m \end{pmatrix} \begin{pmatrix} n\\ m \end{pmatrix}\frac{(m!)^2}{(2m-n)!}b_\lambda ^{2m-n}(u)a_\lambda ^{n-m}(u). \end{aligned}$$

Now,

$$\begin{aligned} \sqrt{q_\lambda (u,e)}=\sqrt{8\lambda }\sum _{l=0}^{\infty }c_{\lambda ,l}(u)e^l, \end{aligned}$$

where

$$\begin{aligned} c_{\lambda ,l}(u)=\sum _{n=0}^{l}\frac{\partial ^nf_\lambda (u,0)}{\partial e^n}\frac{\cos ^{l-n}(u)}{n!}. \end{aligned}$$

Considering \(j=n-m\), and \(k=n-2j\), we have that

$$\begin{aligned} c_{\lambda ,l}(u)= & {} \sum _{n=0}^{l}\sum _{m=\left[ \frac{n+1}{2}\right] }^{n}\begin{pmatrix} \frac{1}{2}\\ m \end{pmatrix}\begin{pmatrix} n\\ m \end{pmatrix}\frac{(m!)^2}{(2m-n)!}\frac{b_\lambda ^{2m-n}(u)a_\lambda ^{n-m}(u)}{n!}\cos ^{l-n}(u)\nonumber \\= & {} \sum _{n=0}^{l}\sum _{m=\left[ \frac{n+1}{2}\right] }^{n} \left[ \prod _{s=1}^{m}\left( \frac{1}{2}-s+1\right) \right] \frac{b_\lambda ^{2m-n}(u)}{(2m-n)!}\frac{a_\lambda ^{n-m}(u)}{(n-m)!}\cos ^{l-n}(u)\nonumber \\= & {} \sum _{j=0}^{\left[ \frac{l}{2}\right] }\sum _{n=2j}^{l}\prod _{s=1}^{n-j}\left( \frac{1}{2}-s+1\right) \frac{b_\lambda ^{n-2j}(u)}{(n-2j)!}\cos ^{l-n}(u)\frac{a_\lambda ^j(u)}{j!}\nonumber \\= & {} \sum _{j=0}^{\left[ \frac{l}{2}\right] }\sum _{k=0}^{l-2j}\prod _{s=j+1}^{k+j}\left( \frac{1}{2}-s+1\right) \frac{b_\lambda ^k(u)}{k!}\cos ^{l-k-2j}(u)\prod _{i=1}^{j}\left( \frac{1}{2}-i+1\right) \frac{a_\lambda ^{j}(u)}{j!}\nonumber \\= & {} \sum _{j=0}^{\left[ \frac{l}{2}\right] }\sum _{k=0}^{l-2j}\begin{pmatrix} \frac{1}{2}-j\\ k \end{pmatrix}b_\lambda ^k(u)\cos ^{l-k-2j}(u)\begin{pmatrix} \frac{1}{2}\\ j \end{pmatrix}a_\lambda ^{j}(u). \end{aligned}$$
(33)

\(\square \)

Lemma 7

Let \(q_\lambda (u,e)\) be the function defined in (16). Then

$$\begin{aligned} \int _{0}^{\pi }\sqrt{q_\lambda (u,e)}\mathrm{d}u=\sqrt{8\lambda }\sum _{\tau =0}^{\infty }\int _{0}^{\pi }c_{\lambda ,2\tau }(u)\mathrm{d}ue^{2\tau }. \end{aligned}$$

Proof

Note first that \(\begin{pmatrix} \frac{1}{2}\\ k \end{pmatrix}(-1)^k<0\) if \(k\ge 1\), and \(\begin{pmatrix} \frac{1}{2}-j\\ k \end{pmatrix}(-1)^k>0\) if \(j\ge 1\) and \(k\ge 0\). Since the function \(-1<\frac{a_\lambda (u)}{1+b_\lambda (u)} < 0\) for \(u\in (0,\pi )\), and \(\sum _{k=0}^{\infty }\begin{pmatrix} \gamma \\ k \end{pmatrix}\beta ^k=(1+\beta )^{\gamma }\) for \(\gamma \in {\mathbb {R}}\) and \(|\beta |<1\), if \(u\in (0,\pi )\), we have that

$$\begin{aligned}&|c_{\lambda ,l}(u)|\\&\quad \le 1+ \sum _{k=1}^{l}\left| \begin{pmatrix} \frac{1}{2}\\ k \end{pmatrix}b_\lambda ^k(u)\right| \left| \cos ^{l-k}(u)\right| +\sum _{j=1}^{\left[ \frac{l}{2}\right] }\sum _{k=0}^{l-2j}\left| \begin{pmatrix} \frac{1}{2}-j\\ k \end{pmatrix}b_\lambda ^k(u)\right| \left| \cos ^{l-k-2j}(u)\begin{pmatrix} \frac{1}{2}\\ j \end{pmatrix}a_\lambda ^{j}(u)\right| \\&\quad \le 1-\sum _{k=1}^{\infty }\begin{pmatrix} \frac{1}{2}\\ k \end{pmatrix}b_\lambda ^k(u)-\sum _{j=1}^{\infty }\sum _{k=0}^{\infty }\begin{pmatrix} \frac{1}{2}-j\\ k \end{pmatrix}b_\lambda ^k(u)\begin{pmatrix} \frac{1}{2}\\ j \end{pmatrix}a_\lambda ^{j}(u)\\&\quad =2-\sqrt{1+b_\lambda (u)}\sum _{j=0}^{\infty }\begin{pmatrix} \frac{1}{2}\\ j \end{pmatrix}\left( \frac{a_\lambda (u)}{1+b_\lambda (u)}\right) ^j\\&\quad \le 2. \end{aligned}$$

Thus, by the dominated convergence theorem we have that

$$\begin{aligned} \int _{0}^{\pi }\sqrt{q_\lambda (u,e)}\mathrm{d}u=\sqrt{8\lambda }\sum _{l=0}^{\infty }\int _{0}^{\pi }c_{\lambda ,l}(u)\mathrm{d}ue^l, \end{aligned}$$

for every \(0\le e<1\). Taking into account the expression of \(c_{\lambda ,l}(u)\), if l is an odd number then \(\int _{0}^{\pi }c_{\lambda ,l}(u)\mathrm{d}u=0\). Therefore,

$$\begin{aligned} \int _{0}^{\pi }\sqrt{q_\lambda (u,e)}\mathrm{d}u=\sqrt{8\lambda }\sum _{\tau =0}^{\infty }\int _{0}^{\pi }c_{\lambda ,2\tau }(u)\mathrm{d}ue^{2\tau }. \end{aligned}$$

\(\square \)

Remark 5

From (33) in Lemma 6, if we define \(h_\tau (u,\omega ):=\cos ^{2\tau -2\omega }(u)(3-\cos ^2(u))^\omega \), we have that

$$\begin{aligned}&c_{\lambda ,2\tau }(u) =\sum _{n=0}^{2\tau }\sum _{m=\left[ \frac{n+1}{2}\right] }^{n}\begin{pmatrix} \frac{1}{2}\\ m \end{pmatrix}\begin{pmatrix} n\\ m \end{pmatrix}\frac{(m!)^2}{(2m-n)!}\frac{b_\lambda ^{2m-n}(u)a_\lambda ^{n-m}(u)}{n!}\cos ^{2\tau -n}(u)\\&\quad =\sum _{n=0}^{2\tau }\sum _{m=\left[ \frac{n+1}{2}\right] }^{n}\left[ \prod _{s=1}^{m}\left( \frac{1}{2}-s+1\right) \right] \frac{(-1)^m}{(n-m)!}\frac{1}{(2m-n)!}\frac{(32\lambda -2)^{2m-n}}{(32\lambda )^m} h_{\tau }(u,n-m). \end{aligned}$$

Now, taking into account that \(\int _{0}^{\pi }\cos ^i(x)\mathrm{d}x=\frac{i-1}{i}\int _{0}^{\pi }\cos ^{i-2}(x)\mathrm{d}x\) for \(i\ge 2\), if \(\tau \ge n-m\ge 0\) then

$$\begin{aligned}&\int _{0}^{\pi } h_{\tau }(u,n-m)\mathrm{d}u\\&\quad =\sum _{i=0}^{n-m}\begin{pmatrix} n-m\\ i \end{pmatrix}3^{i}(-1)^{n-m-i}\int _{0}^{\pi }\cos ^{2(\tau -i)}(u)\mathrm{d}u\\&\quad =\sum _{i=0}^{n-m}\begin{pmatrix} n-m\\ i \end{pmatrix}3^{i}(-1)^{n-m-i}\prod _{j=1}^{\tau -i}\frac{2\tau -2i-2j+1}{2\tau -2i-2j+2}\pi \\&\quad =:{\bar{g}}(\tau ,n-m)\pi . \end{aligned}$$

Hence,

$$\begin{aligned}&\int _{0}^{\pi }c_{\lambda ,2\tau }(u)\mathrm{d}u\nonumber \\= & {} \sum _{n=0}^{2\tau }\sum _{m=\left[ \frac{n+1}{2}\right] }^{n}\left[ \prod _{s=1}^{m}\left( \frac{1}{2}-s+1\right) \right] \frac{(-1)^m}{(n-m)!}\frac{1}{(2m-n)!}\frac{(32\lambda -2)^{2m-n}}{(32\lambda )^m}{\bar{g}}(\tau ,n-m)\pi \nonumber \\= & {} : g_\lambda (\tau )\pi . \end{aligned}$$
(34)

Note that \(\int _{0}^{\pi }c_{\lambda ,2\tau }(u)\mathrm{d}u\) is always a product between a number \(g_\lambda (\tau )\) and \(\pi \), so we can calculate with a symbolic computation software the expression of \(g_\lambda (\tau )\) without error. Thus, for example, we can verify that

$$\begin{aligned}&\int _{0}^{\pi }c_{\lambda ,0}(u)\mathrm{d}u=\pi \\&\quad \int _{0}^{\pi }c_{\lambda ,2}(u)\mathrm{d}u=\frac{768 \lambda ^{2} - 64 \lambda - 1}{4096 \lambda ^{2}}\pi \\&\quad \int _{0}^{\pi }c_{\lambda ,4}(u)\mathrm{d}u=\frac{3 \left( 2293760 \lambda ^{4} - 163840 \lambda ^{3} - 4608 \lambda ^{2} - 128 \lambda - 5\right) }{67108864 \lambda ^{4}}\pi . \end{aligned}$$

In general it seems to be that \(\int _{0}^{\pi }c_{\lambda ,2\tau }(u)\mathrm{d}u>0\) for all \(\lambda \ge \frac{1}{8}\) and \(\tau \in {\mathbb {N}}_0\).

The code used in the Python library “Sympy” with which we calculate \(\int _{0}^{\pi }c_{\lambda ,2\tau }(u)\mathrm{d}u\) is described below

$$\begin{aligned}&\text {def conv(m,n):}\\&\quad \text {return factorial(m)/factorial(m-n)/factorial(n)}\\&\quad \text { def intcos(s):}\\&\quad \text {return prod(Rational(2*s-2*j+1,2*s-2*j+2) for j in range(1,s+1))}\\&\quad \text {def bargt(t,s):}\\&\quad \text {return sum((-1)**(s-i)*3**(i)*conv(s,i)*intcos(t-i)\ for i in}\\&\quad \text {range(s+1))}\\&\quad \text {def gt(tau,lam):}\\&\quad \text {A=sum(sum((-1)**m*prod(Rational(1,2)-s+1}\\&\quad \text {for s in range(1,m+1))*1/factorial(n-m)/factorial(2*m-n)}\\&\quad \text {*(32*lam-2)**(2*m-n)/(32*lam)**m*bargt(tau,n-m) for m in}\\&\quad \text {range(floor(Rational(n+1,2)),n+1)) for n in range(2*tau+1))}\\&\quad \text {return A} \end{aligned}$$

The function \(\text {gt(tau,lam)}\) calculates \(g_\lambda (\tau )\) with error zero.

Lemma 8

Let \(c_{1,l}(u)\) be the coefficient defined in (32). Then

$$\begin{aligned} \int _{0}^{\pi }c_{1,2\tau }(u)\mathrm{d}u\ge -\frac{\pi }{4}. \end{aligned}$$

for all \(\tau \in {\mathbb {N}}_0\).

Proof

For \(u\in (0,\frac{\pi }{2})\), we have that

$$\begin{aligned}&c_{1,2\tau }(u)\nonumber \\&\quad =\sum _{k=0}^{2\tau }\begin{pmatrix} \frac{1}{2}\\ k \end{pmatrix}b_1^k(u)\cos ^{2\tau -k}(u)+\sum _{j=1}^{\tau }\sum _{k=0}^{2\tau -2j}\begin{pmatrix} \frac{1}{2}-j\\ k \end{pmatrix}b_1^k(u)\cos ^{2\tau -k-2j}(u)\begin{pmatrix} \frac{1}{2}\\ j \end{pmatrix}a_1^{j}(u)\nonumber \\&\quad =\cos ^{2\tau }(u)\sum _{k=0}^{2\tau }\begin{pmatrix} \frac{1}{2}\\ k \end{pmatrix}\left( -\frac{15}{16}\right) ^k+\sum _{j=1}^{\tau }\sum _{k=0}^{2\tau -2j}\begin{pmatrix} \frac{1}{2}-j\\ k \end{pmatrix}b_1^k(u)\cos ^{2\tau -k-2j}(u)\begin{pmatrix} \frac{1}{2}\\ j \end{pmatrix}a_1^{j}(u)\nonumber \\&\quad \ge \cos ^{2\tau }(u)\sqrt{1-\frac{15}{16}}+\sum _{j=1}^{\tau }\left[ \sum _{k=0}^{2\tau -2j}\begin{pmatrix} \frac{1}{2}-j\\ k \end{pmatrix}b_1^k(u)\right] \begin{pmatrix} \frac{1}{2}\\ j \end{pmatrix}a_1^{j}(u)\nonumber \\&\quad =(1+b_1(u))^{\frac{1}{2}}\sum _{j=1}^{\infty }\begin{pmatrix} \frac{1}{2}\\ j \end{pmatrix}\left( \frac{a_1(u)}{1+b_1(u)}\right) ^{j}\nonumber \\&\quad =(1+b_1(u))^{\frac{1}{2}}\left( -1+\sqrt{1+\frac{a_1(u)}{1+b_1(u)}}\right) \nonumber \\&\quad =\frac{a_1(u)}{(1+b_1(u))^{\frac{1}{2}}}\frac{1}{1+\sqrt{1-\frac{-a_1(u)}{1+b_1(u)}}}. \end{aligned}$$
(35)

Since the function \(\frac{a_1(u)}{(1+b_1(u))^{\frac{1}{2}}}\) is negative and increasing in \((0,\frac{\pi }{2})\) (because its derivative is equal to \( \frac{ \left( 45 \cos ^{2}{\left( u \right) } - 64 \cos {\left( u \right) } + 45\right) \sin {\left( u \right) }}{16 \left( 16 -15 \cos {\left( u \right) }\right) ^{\frac{3}{2}}} \), which is positive for all \(u\in (0,\frac{\pi }{2})\)), and the function \(\frac{-a_1(u)}{1+b_1(u)}\) is positive and decreasing in \((0,\frac{\pi }{2})\) (since its derivative \(- \frac{\left( 15 \cos ^{2}{\left( u \right) } - 32 \cos {\left( u \right) } + 45\right) \sin {\left( u \right) }}{2 \left( 15 \cos {\left( u \right) } - 16\right) ^{2}}\) is negative for \(u\in (0,\frac{\pi }{2})\)), we have that the last expression in the chain of inequalities mentioned above is increasing. Then, it reaches its minimum in \(\left[ 0,\frac{\pi }{2}\right] \) at \(u=0\). Hence \(c_{1,2\tau }(u)\ge c_{1,2\tau }(0)= - \frac{1}{4}\) for every \(u\in (0,\frac{\pi }{2})\). Therefore

$$\begin{aligned} \int _{0}^{\pi }c_{1,2\tau }(u)\mathrm{d}u=2\int _{0}^{\frac{\pi }{2}}c_{1,2\tau }(u)\mathrm{d}u\ge - \frac{\pi }{4}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltritti, G. Periodic solutions of a generalized Sitnikov problem. Celest Mech Dyn Astr 133, 6 (2021). https://doi.org/10.1007/s10569-021-10005-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-021-10005-z

Keywords

Navigation