Skip to main content
Log in

Retrograde periodic orbits in 1/2, 2/3 and 3/4 mean motion resonances with Neptune

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study planar and three-dimensional retrograde periodic orbits, using the model of the restricted three-body problem (RTBP) with the Sun and Neptune as primaries and focusing on the dynamics of resonant trans-Neptunian objects (TNOs). The position and the stability character of the periodic orbits can provide important piece of information on the stability and long-term evolution of small TNOs in retrograde motion. Using the circular planar model as the basic model, families of retrograde symmetric periodic orbits are computed at the 1/2, 2/3 and 3/4 exterior mean motion resonances with Neptune. The bifurcations for planar families of the elliptic model and families of the circular spatial model are determined and the bifurcated families are computed. In our study of the planar elliptic model, we consider the eccentricity of the primaries in the whole interval \(0<e'<1\) for dynamical completeness. In the spatial circular model, retrograde periodic orbits are obtained mainly from bifurcations of the retrograde planar orbits. Also, we obtain retrograde periodic motion from continuing direct orbits for inclination values larger than \(90^\circ \). The linear stability of orbits is of major importance. Generally, stable periodic orbits are associated with phase space domains of resonant motion where TNOs can be captured. TNOs of retrograde motion are not common, but new discoveries cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antoniadou, K.I., Libert, A.S.: Spatial resonant periodic orbits in the restricted three-body problem. Monthly Notices of the Royal Astronomical Society 483, 2923–2940 (2019)

    Article  ADS  Google Scholar 

  • Brasil, P.I.O., Nesvorny, D., Gomes, R.S.: Dynamical implantation of objects in the Kuiper Belt. Astron. J. 148, 9 (2014)

    Article  Google Scholar 

  • Broucke, R.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7, 1003–1009 (1969)

    Article  ADS  Google Scholar 

  • Bruno, A.D.: The Restricted 3-Body Problem: Plane Periodic Orbits. Walter de Gruyter, Berlin (1994)

    Book  Google Scholar 

  • Celletti, A., Kotoulas, T., Voyatzis, G., Hadjidemetriou, J.: The dynamical stability of a Kuiper Belt-like region. Mon. Not. R. Astron. Soc. 378, 1153–1164 (2007)

    Article  ADS  Google Scholar 

  • Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Astronomy and Astrophysics Library (2002)

  • Duncan, M.J., Levison, Harold F., Mark, Budd Stuart: The dynamical structure of the Kuiper Belt. Astron. J. 110, 3073 (1995)

    Article  ADS  Google Scholar 

  • Gallardo, T.: Three-dimensional structure of mean motion resonances beyond Neptune. Celest. Mech. Dyn. Astron. 132, 9 (2020). https://doi.org/10.1007/s10569-019-9948-7

    Article  ADS  MathSciNet  Google Scholar 

  • Greenstreet, S., Gladman, B., Ngo, H., Granvik, M., Larson, S.: Production of Near-Earth asteroids on retrograde orbits. Astrophys. J. Lett. 749, L39 (2012)

    Article  ADS  Google Scholar 

  • Hadjidemetriou, J.D.: Periodic orbits of the Planetary type and their stability. Celest. Mech. 43, 371–390 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • Hadjidemetriou, J.D.: The elliptic restricted problem at the 3:1 resonnace. Celest. Mech. Dyn. Astron. 53, 151–183 (1992)

    Article  ADS  Google Scholar 

  • Hénon, M.: Vertical stability of periodic orbits in the restricted problem. i. equal masses. Astron. Astrophys. 28, 415 (1973)

    ADS  MATH  Google Scholar 

  • Hénon, M.: Generating Families in the Restricted Three-Body Problem. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Huang, Y., Li, M., Li, J., Gong, S.: Dynamic portrait of the retrograde 1:1 mean motion resonance. Astron. J. 155, 262 (2018)

    Article  ADS  Google Scholar 

  • Ichtiaroglou, S., Katopodis, K., Michalodimitrakis, M.: Periodic orbits in the three-dimensional planetary systems. J. Asttrophys. Astron. 10, 367–380 (1989)

    Article  ADS  Google Scholar 

  • Jefferys, W.H., Standish, E.M.: Further periodic solutions of the three-dimensional restricted problem II. Astron. J. 77, 394–400 (1972)

    Article  ADS  Google Scholar 

  • Jewitt, D.: Kuiper belt objects. Ann. Rev. Earth Planet. Sci. 27, 287–312 (1999). https://doi.org/10.1146/annurev.earth.27.1.287

    Article  ADS  Google Scholar 

  • Kotoulas, T., Hadjidemetriou, J.D.: Resonant periodic orbits of trans-neptunian objects. Earth Moon Planets 91(2), 63–93 (2002)

    Article  ADS  Google Scholar 

  • Kotoulas, T., Voyatzis, G.: Comparative study of the 2:3 and 3:4 resonant motion with Neptune: an application of symplectic mappings and low frequency analysis. Celest. Mech. Dyn. Astron. 88, 343–363 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Kotoulas, T.A.: The dynamics of the 1:2 resonant motion with Neptune in the 3D elliptic restricted three-body problem. Astron. Astrophys. 429, 1107–1115 (2005)

    Article  ADS  Google Scholar 

  • Kotoulas, T.A., Voyatzis, G.: Three dimensional periodic orbits in exterior mean motion resonances with Neptune. Astron. Astrophys. 441, 807–814 (2005)

    Article  ADS  Google Scholar 

  • Kotoulas, T.A., Voyatzis, G.: Planar retrograde periodic orbits of the asteroids trapped in two body mean motion resonances with jupiter. Planet. Space Sci. 182, 1–12 (2020)

    Article  Google Scholar 

  • Lan, L., Malhotra, R.: Neptune’s resonances in the scattered disk. Celest. Mech. Dyn. Astron. 131, 39 (2019). https://doi.org/10.1007/s10569-019-9917-1

    Article  ADS  MathSciNet  Google Scholar 

  • Lei, H.: Three-dimensional phase structures of mean motion resonances. Mon. Not. R. Astron. Soc. 487, 2097–2116 (2019)

    Article  ADS  Google Scholar 

  • Li, M., Huang, Y., Gong, S.: Survey of asteroids in retrograde mean motion resonances with planets. Astron. Astrophys. 630, 1–8 (2019)

    Google Scholar 

  • Lykawka, P.S., Mukai, T.: Dynamical classification of trans-neptunian objects: probing their origin, evolution, and interrelation. Icarus 189, 213–232 (2007). https://doi.org/10.1016/j.icarus.2007.01.001

    Article  ADS  Google Scholar 

  • Malhotra, R.: The phase space structure near neptune resonances in the Kuiper Belt. Astron. J. 111, 504 (1996)

    Article  ADS  Google Scholar 

  • Malhotra, R., Lan, L., Volk, K., Wang, X.: Neptune’s 5:2 resonance in the Kuiper Belt. Astron. J. 156, 13 (2018)

    Article  Google Scholar 

  • Morais, M.H.M., Namouni, F.: Retrograde resonance in the planar three-body problem. Celest. Mech. Dyn. Astron. 117, 405–421 (2013a)

    Article  ADS  MathSciNet  Google Scholar 

  • Morais, M.H.M., Namouni, F.: Asteroids in retrograde resonance with Jupiter and Saturn. Mon. Not. R. Astron. Soc. 436, L30–L34 (2013b)

    Article  ADS  Google Scholar 

  • Morais, M.H.M., Namouni, F.: A numerical investigation of coorbital stability and libration in three dimensions. Celest. Mech. Dyn. Astron. 125, 91–106 (2016)

    Article  ADS  Google Scholar 

  • Morais, M.H.M., Namouni, F.: Periodic orbits of the retrograde coorbital problem. Mon. Not. R. Astron. Soc. 490, 3799–3805 (2019)

    Article  ADS  Google Scholar 

  • Morbidelli, A., Thomas, F., Moons, M.: The resonant structure of the Kuiper Belt and the dynamics of the first five trans-neptunian objects. Icarus 118, 332–340 (1995)

    ADS  Google Scholar 

  • Namouni, F., Morais, M.H.M.: Resonance libration and width at arbitrary inclination. Mon. Not. R. Astron. Soc. 493, 2854–2871 (2020)

    Article  ADS  Google Scholar 

  • Nesvorny, D., Roig, F.: Mean motion resonances in the trans-neptunian region. I. The 2:3 resonance with Neptune. Icarus 148, 282–300 (2000)

    Article  ADS  Google Scholar 

  • Nesvorny, D., Roig, F.: Mean motion resonances in the trans-neptunian region. Part II: the 1: 2, 3: 4, and weaker resonances. Icarus 150, 104–123 (2001)

    Article  ADS  Google Scholar 

  • Restrepo, R.L., Russell, R.P.: A database of planar axisymmetric periodic orbits for the solar system. Celest. Mech. Dyn. Astron. 130, 24 (2018)

    Article  MathSciNet  Google Scholar 

  • Robin, I.A., Markellos, V.V.: Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits. Celest. Mech. 21, 395–435 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Saillenfest, M., Fouchard, M., Tommei, G., Valsecchi, G.: Long-term dynamics beyond Neptune: secular models to study the regular motions. Celest. Mech. Dyn. Astron. 126, 369–403 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Siegel, C., Moser, J.: Lectures on Celestial Mechanics. Springer, Berlin (1971)

    Book  Google Scholar 

  • Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  • Voyatzis, G., Kotoulas, T.: Planar periodic orbits in exterior resonances with Neptune. Planet. Space Sci. 53, 1189–1199 (2005)

    Article  ADS  Google Scholar 

  • Voyatzis, G., Kotoulas, T., Hadjidemetriou, J.D.: Symmetric and nonsymmetric periodic orbits in the exterior mean motion resonances with neptune. Celest. Mech. Dyn. Astron. 91, 191–202 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Voyatzis, G., Tsiganis, K., Antoniadou, K.I.: Inclined asymmetric librations in exterior resonances. Celest. Mech. Dyn. Astron. 130, 16 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the first reviewer, Dr Tabare Gallardo, and an anonymous referee for their valuable comments which helped us to improve the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kotoulas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on Trans-Neptunian Objects Guest Editors: David Nesvorny and Alessandra Celletti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotoulas, T., Voyatzis, G. Retrograde periodic orbits in 1/2, 2/3 and 3/4 mean motion resonances with Neptune. Celest Mech Dyn Astr 132, 33 (2020). https://doi.org/10.1007/s10569-020-09969-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-020-09969-1

Keywords

Navigation