Advertisement

The Sun–Earth saddle point: characterization and opportunities to test general relativity

  • Francesco Topputo
  • Diogene A. Dei Tos
  • Mirco Rasotto
  • Masaki Nakamiya
Original Article
Part of the following topical collections:
  1. Recent advances in the study of the dynamics of N-body problem

Abstract

The saddle points are locations where the net gravitational accelerations balance. These regions are gathering more attention within the astrophysics community. Regions about the saddle points present clean, close-to-zero background acceleration environments where possible deviations from General Relativity can be tested and quantified. Their location suggests that flying through a saddle point can be accomplished by leveraging highly nonlinear orbits. In this paper, the geometrical and dynamical properties of the Sun–Earth saddle point are characterized. A systematic approach is devised to find ballistic orbits that experience one or multiple passages through this point. A parametric analysis is performed to consider spacecraft initially on \(L_{1,2}\) Lagrange point orbits. Sun–Earth saddle point ballistic fly-through trajectories are evaluated and classified for potential use. Results indicate an abundance of short-duration, regular solutions with a variety of characteristics.

Keywords

Saddle point Lagrange point Ballistic orbits General relativity 

Notes

Acknowledgements

Part of the work described in this paper has been conducted under ESA Contract No. 4000118201/16/F/MOS. The authors would like to acknowledge Florian Renk, Gonçalo Aguiar, Erind Veruari, Srikara Cherukuri, and Carmine Giordano for their valuable contributions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acton Jr., C.: Ancillary data services of Nasa’s navigation and ancillary information facility. Planet. Space Sci. 44(1), 65–70 (1996).  https://doi.org/10.1016/0032-0633(95)00107-7 ADSCrossRefGoogle Scholar
  2. Acton Jr., C., Bachman, N., Semenov, B., Wright, E.: A look towards the future in the handling of space science mission geometry. Planet. Space Sci. 150, 9–12 (2018).  https://doi.org/10.1016/j.pss.2017.02.013 ADSCrossRefGoogle Scholar
  3. Bekenstein, J., Magueijo, J.: Modified Newtonian dynamics habitats within the solar system. Phys. Rev. D 73(103), 513.1–513.14 (2006).  https://doi.org/10.1103/PhysRevD.73.103513 Google Scholar
  4. Belbruno, E., Miller, J.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16(4), 770–775 (1993).  https://doi.org/10.2514/3.21079 ADSCrossRefGoogle Scholar
  5. Cox, A., Howell, K.: Transfers to a Sun–Earth saddle point: an extended mission design option for LISA pathfinder. Adv. Astronaut. Sci. 158(I), 653–668 (2016)Google Scholar
  6. Dei Tos, D., Topputo, F.: On the advantages of exploiting the hierarchical structure of astrodynamical models. Acta Astronaut. 136, 236–247 (2017a).  https://doi.org/10.1016/j.actaastro.2017.02.025 ADSCrossRefGoogle Scholar
  7. Dei Tos, D., Topputo, F.: Trajectory refinement of three-body orbits in the real solar system model. Adv. Space Res. 59(8), 2117–2132 (2017b).  https://doi.org/10.1016/j.asr.2017.01.039 ADSCrossRefGoogle Scholar
  8. Fabacher, E., Kemble, S., Trenkel, C., Dunbar, N.: Multiple Sun–Earth saddle point flybys for LISA Pathfinder. Adv. Space Res. 52(1), 105–116 (2013).  https://doi.org/10.1016/j.asr.2013.02.005 ADSCrossRefGoogle Scholar
  9. Galianni, P., Feix, M., Zhao, H.S., Horne, K.: Testing quasilinear modified Newtonian dynamics in the solar system. Phys. Rev. D 86, 044,002 (2012).  https://doi.org/10.1103/PhysRevD.86.044002. 1–18CrossRefGoogle Scholar
  10. Gómez, G., Masdemont, J., Mondelo, J.: Solar system models with a selected set of frequencies. Astron. Astrophys. 390(2), 733–750 (2002).  https://doi.org/10.1051/0004-6361:20020625 ADSCrossRefGoogle Scholar
  11. Howell, K.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32(1), 53–71 (1984).  https://doi.org/10.1007/BF01358403 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. Howell, K., Pernicka, H.: Numerical determination of lissajous trajectories in the restricted three-body problem. Celest. Mech. Dyn. Astron. 41(1), 107–124 (1987).  https://doi.org/10.1007/BF01238756 CrossRefzbMATHGoogle Scholar
  13. Jehn, R., Campagnola, S., Garcia, D., Kemble, S.: Low-thrust approach and gravitational capture at Mercury. In: 18th International Symposium on Space Flight Dynamics, vol. 548, pp. 487–492 (2004)Google Scholar
  14. Luo, Z., Topputo, F., Bernelli-Zazzera, F., Tang, G.: Constructing ballistic capture orbits in the real solar system model. Celest. Mech. Dyn. Astron. 120(4), 433–450 (2014).  https://doi.org/10.1007/s10569-014-9580-5 ADSMathSciNetCrossRefGoogle Scholar
  15. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).  https://doi.org/10.1137/0111030 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983).  https://doi.org/10.1086/161130 ADSCrossRefGoogle Scholar
  17. Milgrom, M.: The MOND paradigm. arXiv preprint arXiv:astro-ph/0801.3133 (2008)
  18. Milgrom, M.: Testing the MOND paradigm of modified dynamics with galaxy–galaxy gravitational lensing. Phys. Rev. Lett. 111, 041105 (2013).  https://doi.org/10.1103/PhysRevLett.111.041105 ADSCrossRefGoogle Scholar
  19. Scott, D.: Scott’s rule. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 497–502 (2010).  https://doi.org/10.1002/wics.103 CrossRefGoogle Scholar
  20. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)zbMATHGoogle Scholar
  21. Topputo, F.: On optimal two-impulse Earth–Moon transfers in a four-body model. Celest. Mech. Dyn. Astron. 117(3), 279–313 (2013).  https://doi.org/10.1007/s10569-013-9513-8 ADSMathSciNetCrossRefGoogle Scholar
  22. Topputo, F.: Fast numerical approximation of invariant manifolds in the circular restricted three-body problem. Commun. Nonlinear Sci. Numer. Simul. 32(Supplement C), 89–98 (2016).  https://doi.org/10.1016/j.cnsns.2015.08.004 ADSMathSciNetCrossRefGoogle Scholar
  23. Topputo, F., Belbruno, E.: Earth–Mars transfers with ballistic capture. Celest. Mech. Dyn. Astron. 121(4), 329–346 (2015).  https://doi.org/10.1007/s10569-015-9605-8 ADSMathSciNetCrossRefGoogle Scholar
  24. Topputo, F., Dei Tos, D., Rasotto, M., Renk, F.: Design and validation of ultra low thrust transfers to the Sun–Earth saddle point with application to LISA Pathfinder mission extension. In: 26th International Symposium on Space Flight Dynamics, 3–9 June 2017, Matsuyama, Japan (2017)Google Scholar
  25. Topputo, F., Dei Tos, D., Rasotto, M., Renk, F.: Design and feasibility assessment of ultra low thrust trajectories to the Sun–Earth saddle point. In: 28th AIAA/AAS Space Flight Mechanics Meeting, Kissimmee, Florida, USA (2018). https://dpo.org/10.2514/6.2018-1691
  26. Trenkel, C., Kemble, S.: Gravitational science with LISA pathfinder. J. Phys. Conf. Ser. 154(1), 012002 (2009).  https://doi.org/10.1088/1742-6596/154/1/012002 CrossRefGoogle Scholar
  27. Trenkel, C., Wealthy, D.: Effect of LISA pathfinder spacecraft self-gravity on anomalous gravitational signals near the Sun–Earth saddle point predicted by quasilinear MOND. Phys. Rev. D 90, 084037.1–084037.22 (2014).  https://doi.org/10.1103/PhysRevD.90.084037 ADSCrossRefGoogle Scholar
  28. Trenkel, C., Kemble, S., Bevis, N., Magueijo, J.: Testing modified Newtonian dynamics with LISA pathfinder. Adv. Space Res. 50(11), 1570–1580 (2012).  https://doi.org/10.1016/j.asr.2012.07.024 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aerospace Science and TechnologyPolitecnico di MilanoMilanItaly
  2. 2.Dinamica SrlMilanItaly
  3. 3.Unit of Synergetic Studies for SpaceKyoto UniversityKyotoJapan

Personalised recommendations