Advertisement

Fuel optimization for low-thrust Earth–Moon transfer via indirect optimal control

  • Daniel Pérez-Palau
  • Richard Epenoy
Original Article

Abstract

The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun–Earth–Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin’s Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem’s state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth–Moon and Sun–Earth is presented leading to a physical interpretation of the different families of trajectories.

Keywords

Low-thrust propulsion Minimum-fuel trajectories Earth–Moon transfers Indirect optimal control Bicircular Restricted Four-Body Problem 

Mathematics Subject Classification

70F10 65K10 49M05 

References

  1. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer series in computational mathematics. Springer, Berlin (1990)CrossRefMATHGoogle Scholar
  2. Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Dover Publications, New York (1971)Google Scholar
  3. Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang-bang optimal control problems—numerical results and statistical interpretation. Optim. Control Appl. Methods 23(4), 171–197 (2002).  https://doi.org/10.1002/oca.709 MathSciNetCrossRefMATHGoogle Scholar
  4. Betts, J.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193–207 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. Bryson, A., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation and Control, Halsted Press book. Taylor & Francis, New York (1975)Google Scholar
  6. Chen, Z.: \({{\rm L}}^1\)-optimality conditions for the Circular Restricted Three-Body Problem. Celest. Mech. Dyn. Astron. 126(4), 461–481 (2016).  https://doi.org/10.1007/s10569-016-9703-2 CrossRefGoogle Scholar
  7. Dixon, L.C.W., Biggs, M.C.: The advantages of adjoint-control transformations when determining optimal trajectories by Pontryagin’s maximum principle. Aeronautical J. 76, 169–174 (1972)Google Scholar
  8. Dormand, J., Prince, P.: A family of embedded Runge–Kutta formulae. J. comput. Appl. Math. 6(1), 19–26 (1980)MathSciNetCrossRefMATHGoogle Scholar
  9. Edelbaum, T.N.: Propulsion requirements for controllable satellites. ARS(Am Rocket Soc) J Vol: 31.  https://doi.org/10.2514/8.5723 (1961)
  10. Filho, L.A.G., da Silva, Fernandes S.: A study of the influence of the Sun on optimal two-impulse Earth-to-Moon trajectories with moderate time of flight in the three-body and four-body models. Acta Astronaut. 134, 197–220 (2017).  https://doi.org/10.1016/j.actaastro.2017.02.006 ADSCrossRefGoogle Scholar
  11. Gómez, G., Jorba, A., Simó, C., Masdemont, J.: Dynamics and Mission Design Near Libration Points, Volume IV: Advanced Methods for Triangular Points. World Scientific, Singapore (2001)MATHGoogle Scholar
  12. Kato, M., Sasaki, S., Tanaka, K., Iijima, Y., Takizawa, Y.: The Japanese lunar mission SELENE: science goals and present status. Adv. Space Res. 42(2), 294–300 (2008).  https://doi.org/10.1016/j.asr.2007.03.049 ADSCrossRefGoogle Scholar
  13. Kawaguchi, J., Fujiwara, A., Uesugi, T.: Hayabusa its technology and science accomplishment summary and Hayabusa-2. Acta Astronaut. 62(10–11), 639–647 (2008).  https://doi.org/10.1016/j.actaastro.2008.01.028 ADSCrossRefGoogle Scholar
  14. Koon, W., Lo, M., Marsden, J., Ross, S.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, Wellington (2011)MATHGoogle Scholar
  15. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81(1), 63–73 (2001).  https://doi.org/10.1023/A:1013359120468 ADSMathSciNetCrossRefMATHGoogle Scholar
  16. McKenzie, R., Szebehely, V.: Non-linear stability around the triangular libration points. Celest. Mech. 23, 223–229 (1981).  https://doi.org/10.1007/BF01230727 ADSCrossRefGoogle Scholar
  17. Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Efficient invariant-manifold, low-thrust planar trajectories to the Moon. Commun. Nonlinear Sci. Numer. Simul. 17(2), 817–831 (2012).  https://doi.org/10.1016/j.cnsns.2011.06.033 ADSMathSciNetCrossRefMATHGoogle Scholar
  18. Moore, A., Ober-Blbaum, S., Marsden, J.: Trajectory design combining invariant manifolds with discrete mechanics and optimal control. J. Guid. Control Dyn. 35(5), 1507–1525 (2012).  https://doi.org/10.2514/1.55426 ADSCrossRefGoogle Scholar
  19. Oshima, K., Campagnola, S., Yanao, T.: Global search for low-thrust transfers to the Moon in the Planar Circular Restricted Three-Body Problem. Celest. Mech. Dyn. Astron. pp 1–20.  https://doi.org/10.1007/s10569-016-9748-2 (2017)
  20. Pérez-Palau, D., Masdemont, J.J., Gómez, G.: Tools to detect structures in dynamical systems using Jet Transport. Celest. Mech. Dyn. Astron. 123(3), 239–262 (2015).  https://doi.org/10.1007/s10569-015-9634-3 ADSMathSciNetCrossRefGoogle Scholar
  21. Powell, M.: A Hybrid Method for Nonlinear Algebraic Equations, pp. 87–114. Gordon and Breach, London (1970)Google Scholar
  22. Qi, Y., Xu, S.: Earth-Moon transfer with near-optimal lunar capture in the Restricted Four-Body Problem. Aerosp. Sci. Technol. 55, 282–291 (2016).  https://doi.org/10.1016/j.ast.2016.06.008 CrossRefGoogle Scholar
  23. Racca, G., Marini, A., Stagnaro, L., van Dooren, J., di Napoli, L., Foing, B., et al.: SMART-1 mission description and development status. Planet. Space Sci. 50(14–15), 1323–1337 (2002).  https://doi.org/10.1016/S0032-0633(02)00123-X ADSCrossRefGoogle Scholar
  24. Rayman, M.D., Varghese, P., Lehman, D.H., Livesay, L.L.: Results from the deep space 1 technology validation mission. Acta Astronaut. 47(2), 475–487 (2000).  https://doi.org/10.1016/S0094-5765(00)00087-4 ADSCrossRefGoogle Scholar
  25. Ren, Y., Shan, J.: Low-energy lunar transfers using spatial transit orbits. Commun. Nonlinear Sci. Numer. Simul. 19(3), 554–569 (2014).  https://doi.org/10.1016/j.cnsns.2013.07.020 ADSMathSciNetCrossRefGoogle Scholar
  26. Roncoli, R., Fujii, K.: Mission design overview for the Gravity Recovery and Interior Laboratory (GRAIL) mission. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference (2010)Google Scholar
  27. Russell, C., Barucci, M., Binzel, R., Capria, M., Christensen, U., Coradini, A., et al.: Exploring the asteroid belt with ion propulsion: DAWN mission history, status and plans. Adv. Space Res. 40(2), 193–201 (2007).  https://doi.org/10.1016/j.asr.2007.05.083 ADSCrossRefGoogle Scholar
  28. Russell, R.P.: Primer vector theory applied to global low-thrust trade studies. J. Guid. Control Dyn. 30(3), 460–472 (2007)ADSCrossRefGoogle Scholar
  29. Shen, H.X., Casalino, L.: Indirect optimization of three-dimensional multiple-impulse Moon-to-Earth transfers. J. Astronaut. Sci. 61(3), 255–274 (2014).  https://doi.org/10.1007/s40295-014-0018-9 CrossRefGoogle Scholar
  30. Simó, C., Gómez, G., Jorba, À., Masdemont, J., et al.: The Bicircular Model Near the Triangular Libration Points of the RTBP, pp. 343–370. Springer, Boston (1995).  https://doi.org/10.1007/978-1-4899-1085-1_34 MATHGoogle Scholar
  31. Simó, C., Sousa-Silva, P., Terra, M.: Practical Stability Domains Near L4,5 in the Restricted Three-Body Problem: Some Preliminary Facts, pp. 367–382. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-38830-9 MATHGoogle Scholar
  32. Sousa-Silva, P.A., Terra, M.O.: A survey of different classes of Earth-to-Moon trajectories in the patched three-body approach. Acta Astronaut. 123, 340–349 (2016).  https://doi.org/10.1016/j.actaastro.2016.04.008. special Section: Selected Papers from the International Workshop on Satellite Constellations and Formation Flying 2015ADSCrossRefGoogle Scholar
  33. Szebehely, V.: Theory of Orbits. Academic Press, Cambridge (1967)MATHGoogle Scholar
  34. Taheri, E., Abdelkhalik, O.: Fast initial trajectory design for low-thrust Restricted Three-Body Problems. J. Guid. Control Dyn. 38(11), 2146–2160 (2015).  https://doi.org/10.2514/1.G000878 ADSCrossRefGoogle Scholar
  35. Tooley, M., Filippone, A., Megson, T., Cook, M., Carpenter, P.W., Houghton, E., et al.: Aerospace Engineering e-Mega Reference. Butterworth-Heinemann, Oxford (2009)Google Scholar
  36. Topputo, F.: On optimal two-impulse Earth-Moon transfers in a four-body model. Celest. Mech. Dyn. Astron. 117(3), 279–313 (2013).  https://doi.org/10.1007/s10569-013-9513-8 ADSMathSciNetCrossRefGoogle Scholar
  37. Zhang, C., Topputo, F., Bernelli-Zazzera, F., Zhao, Y.S.: Low-thrust minimum-fuel optimization in the Circular Restricted Three-Body Problem. J. Guid. Control Dyn. 38, 1501–1510 (2014).  https://doi.org/10.2514/1.G001080 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNESToulouse Cedex 9France

Personalised recommendations