Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 128, Issue 4, pp 483–513 | Cite as

Representation of light pressure resultant force and moment as a tensor series

  • Nikolay Nerovny
  • Vladimir Zimin
  • Sergey Fedorchuk
  • Evgeny Golubev
Original Article

Abstract

In this article, we address the problem of the determination of light pressure upon space structures with a complex geometric shape. For each surface element, we enforce a condition that it can interact with light only from its front side, a condition represented in the form of series of Chebyshev polynomials of the first kind. This Chebyshev expansion enables the use of a series of tensors of increasing rank for determination of the force and moment acting on the sail. We obtain expressions for the determination of light pressure on space structures of complex geometry, taking into account self-shadowing and reflections within the structure. We also give the expressions for tensor parametrization using the specularity coefficient in case of specular -diffuse reflection. For these expressions, we calculated the principal moment and force upon two-sided flat solar sail, spherical and cylindrical bodies, and approximated light pressure upon the proposed space-based observatory Millimetron. The proposed expressions can be used in the ballistic analysis of solar sails and other space objects significantly affected by radiation pressure. Also, these results can be used to analyze the dynamics of large-scale space structures around their center of gravity under light pressure.

Keywords

Solar sail Light pressure Resultant force Resultant moment SRP Millimetron 

Notes

Acknowledgements

Authors would like to thank assistant professor Marchevsky I.K. from department “Applied Mathematics” of BMSTU, assistant Kotsur O.S. from department “Aerospace Systems” of BMSTU, and assistant Goncharov D.A. from department “Theoretical Mechanics” of BMSTU for their valuable advice and discussions which led to the creation of the explained method.

References

  1. Alhorn, D., Casas, J., Agasid, E., Adams, C., Laue, G., Kitts, C., et al.: NanoSail-D: the small satellite that could! In: AIAA/USU conference on small satellites. http://digitalcommons.usu.edu/smallsat/2011/all2011/37 (2011)
  2. Bar-Sever, Y., Kuang, D.: New empirically derived solar radiation pressure model for global positioning. In: System satellites, IPN progress report, pp. 42–159. (2004)Google Scholar
  3. Bar-Sever, Y.E., Russ, K.M.: New and improved solar radiation models for GPS satellites based on flight data. Technical report. http://www.dtic.mil/dtic/tr/fulltext/u2/a485820.pdf (1997)
  4. Beekman, G.: IO Yarkovsky and the discovery of ’his’ effect. J. Hist. Astron. 37:71–86. http://adsabs.harvard.edu/full/2006JHA....37...71B (2006)
  5. BMSTU-Sail Space Experiment: Scientific and Technical Advisory Council of the Federal Space Agency for Scientific and Applied Research and Experiment Programs on Manned Space Stations (2014). http://knts.tsniimash.ru/ru/site/Experiment_q.aspx?idE=255. (in Russian)
  6. Bottke, W.F.J., Vokrouhlický, D., Rubincam, D.P., Nesvorný, D.: The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34(1), 157–191 (2006). doi: 10.1146/annurev.earth.34.031405.125154 ADSCrossRefGoogle Scholar
  7. Burns, J.A., Lamy, P.L., Soter, S.: Radiation forces on small particles in the solar system. Icarus 40(1), 1–48 (1979). doi: 10.1016/0019-1035(79)90050-2 ADSCrossRefGoogle Scholar
  8. Burns, J.A., Lamy, P.L., Soter, S.: Radiation forces on small particles in the solar system: a re-consideration. Icarus 232, 263–265 (2014)ADSCrossRefGoogle Scholar
  9. Dobrovolskis, A.R.: Inertia of any polyhedron. Icarus 124(2), 698–704 (1996). doi: 10.1006/icar.1996.0243 ADSCrossRefGoogle Scholar
  10. Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave version 4.0.0 manual: a high-level interactive language for numerical computations. http://www.gnu.org/software/octave/doc/interpreter (2015)
  11. Fliegel, H.F., Gallini, T.E.: Solar force modeling of block IIR global positioning system satellites. J. Spacecr. Rockets 33(6), 863–866 (1996). doi: 10.2514/3.26851 ADSCrossRefGoogle Scholar
  12. Fliegel, H.F., Gallini, T.E., Swift, E.R.: Global positioning system radiation force model for geodetic applications. J. Geophys. Res. 97(B1), 559 (1992). doi: 10.1029/91JB02564 ADSCrossRefGoogle Scholar
  13. Forward, R.: Grey solar sails. Am. Inst. Aeronaut. Astronaut. (1989). doi: 10.2514/6.1989-2343 Google Scholar
  14. Hartmann, W.K., Farinella, P., Vokrouhlický, D., Weidenschilling, S.J., Morbidelli, A., Marzari, F., et al.: Reviewing the Yarkovsky effect: new light on the delivery of stone and iron meteorites from the asteroid belt. Meteorit. Planet. Sci. 34(S4), A161–A167 (1999). doi: 10.1111/j.1945-5100.1999.tb01761.x ADSCrossRefGoogle Scholar
  15. Howell, J.R., Menguc, M.P., Siegel, R.: Thermal radiation heat transfer, 6th edn. CRC Press, Boca Raton (2015)Google Scholar
  16. Jing, H., ShengPing, G., JunFeng, L.: A curved surface solar radiation pressure force model for solar sail deformation. Sci. China Phys. Mech. Astron. 55(1), 141–155 (2012). doi: 10.1007/s11433-011-4575-7 CrossRefGoogle Scholar
  17. Jing, H., Shengping, G., Junfeng, L., Yufei, L.: The solar radiation pressure force models for a general sail surface shape. In: Macdonald, M. (ed.) Advances in solar sailing, Springer Praxis Books, pp. 469–488. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-34907-2_30 CrossRefGoogle Scholar
  18. Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C., et al.: NanoSail-D: a solar sail demonstration mission. Acta Astronaut. 68(56), 571–575 (2011). doi: 10.1016/j.actaastro.2010.02.008 ADSCrossRefGoogle Scholar
  19. Kardashev, N.S.: Radioastron: a radio telescope much greater than the earth. Exp. Astron. 7(4), 329–343 (1997). doi: 10.1023/A:1007937203880 ADSCrossRefGoogle Scholar
  20. Kardashev, N.S., Andreyanov, V.V., Buyakas, V.I.: Project millimetron. In: Proceedings of PN Lebedev Physical Institute, vol. 228, pp. 112–128. (2000). (in Russian) Google Scholar
  21. Katasev, L.A., Kulikova, N.V.: Physical and mathematical modeling of the formation and evolution of meteor streams. II. Astronomicheskii Vestnik 14:179–183. http://adsabs.harvard.edu/abs/1981AVest..14..225K (1981)
  22. Kawaguchi, J.: An overview of solar sail related activities at JAXA. In: Macdonald, M. (ed.) Advances in solar sailing, Springer Praxis Books, pp. 3–14. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-34907-2_1 CrossRefGoogle Scholar
  23. Kinzel, W.M.: Managing angular momentum accumulation by visit sequencing and visit date: roll selection. Technical report JWST-STScI-000713, SM-12, JWST Science and Operations Center Configuration Management Office (2005)Google Scholar
  24. Kristensen, A.W., Akenine-Möller, T., Jensen, H.W.: Precomputed local radiance transfer for real-time lighting design. In: ACM transactions on graphics (TOG), ACM, vol. 24, pp. 1208–1215. http://dl.acm.org/citation.cfm?id=1073334 (2005)
  25. Lebedew, P.: Untersuchungen über die druckkräfte des lichtes. Annalen der Physik 311(11), 433–458 (1901). doi: 10.1002/andp.19013111102 ADSCrossRefGoogle Scholar
  26. Leonov, V.V.: Radiation heat transfer in mirror concentrator systems. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbrücken (2012). (in Russian) Google Scholar
  27. Liu, X., Sloan, P.P.J., Shum, H.Y., Snyder, J.: All-frequency precomputed radiance transfer for glossy objects. In: Rendering techniques. http://research.microsoft.com/en-us/um/people/johnsny/papers/allfreq.pdf (2004)
  28. Mäki-Patola, T.: Precomputed radiance transfer. In: Tik-111500 Seminar on computer graphics. http://www.mcpatola.com/prtf_fixed.pdf (2003)
  29. Maxwell, J.C.: A treatise on electricity and magnetism, vol. 2. Clarendon Press, Oxford (1873)MATHGoogle Scholar
  30. McInnes, C.R.: Solar sailing: technology, dynamics and mission applications. Springer Science & Business Media, Berlin (2004)Google Scholar
  31. McMahon, J., Scheeres, D.J.: General solar radiation pressure model for global positioning system orbit determination. J. Guid. Control Dyn. 37(1), 325–330 (2014). doi: 10.2514/1.61113 ADSCrossRefGoogle Scholar
  32. McMahon, J.W., Scheeres, D.J.: New solar radiation pressure force model for navigation. J. Guid. Control Dyn. 33(5), 1418–1428 (2010). doi: 10.2514/1.48434 ADSCrossRefGoogle Scholar
  33. McMahon, J.W., Scheeres, D.J.: Improving space object catalog maintenance through advances in solar radiation pressure modeling. J. Guid. Control Dyn. (2015). doi: 10.2514/1.G000666 Google Scholar
  34. Neiman, V.B., Romanov, E.M., Chernov, V.M.: Ivan Osipovich Yarkovsky. Earth Univ. 4, 63–64 (1965)Google Scholar
  35. Nerovnyi, N., Zimin, V.: Determination of the radiation pressure force acting on a solar sail taking into account stress-dependent optical parameters of sail material. Her. Bauman Mosc. State Tech. Univ. Ser. Mech. Eng. 96(3):61–78. http://vestnikmach.ru/eng/catalog/simul/hidden/486.html (2014). (in Russian)
  36. Öpik, E.J.: Collision probabilities with the planets and the distribution of interplanetary matter. In: Proceedings of the royal irish academy. Section A: mathematical and physical sciences, JSTOR, vol. 54, pp. 165–199. http://www.jstor.org/stable/20488532 (1951)
  37. Paddack, S.J.: Rotational bursting of small celestial bodies: effects of radiation pressure. J. Geophys. Res. 74(17), 4379–4381 (1969). doi: 10.1029/JB074i017p04379 ADSCrossRefGoogle Scholar
  38. Polyakhova, E.N.: Space flight with solar sail, 2nd edn. Librokom, Moscow (2011) (in Russian)Google Scholar
  39. Rachkin, D., Tenenbaum, S., Dmitriev, A., Nerovnyy, N., Kotsur, O., Vorobyov, A.: 2-blades deploying by centrifugal force solar sail experiment (IAC-11, E2,3,8, x9437). In: Proceedings of 62nd international astronautical congress, pp. 9128–9142. Cape Town, SA (2011)Google Scholar
  40. Radzievskii, V.V.: About the influence of the anisotropically reemited solar radiation on the orbits of asteroids and meteoroids. Astron Zh 29, 162–170 (1952)ADSGoogle Scholar
  41. Radzievskii, V.V.: A mechanism for the disintegration of asteroids and meteorites. Dokl Akad Nauk SSSR 97, 49–52 (1954)Google Scholar
  42. Raykunov, G.G., Komkov, V.A., Melnikov, V.M., Kharlov, B.N.: Tsentrobezhnye beskarkasnye krupnogabaritnye kosmicheskie konstruktsii. ANO Fizmatlit, Moscow (2009). (in Russian, Centrifugal frameless large space structures) Google Scholar
  43. Ridenoure, R., Munakata, R., Diaz, A., Wong, S., Plante, B., Stetson, D., et al.: LightSail program status: one down, one to go. In: AIAA/USU conference on small satellites. http://digitalcommons.usu.edu/smallsat/2015/all2015/32 (2015)
  44. Rios-Reyes, L.: Solar sails: modeling, estimation, and trajectory control. PhD thesis, University of Michigan (2006)Google Scholar
  45. Rios-Reyes, L., Scheeres, D.J.: Applications of the generalized model for solar sails. In: AIAA guidance, navigation, and control conference and exhibit. http://arc.aiaa.org/doi/pdf/10.2514/6.2004-5434 (2004)
  46. Rios-Reyes, L., Scheeres, D.J.: Generalized model for solar sails. J. Spacecr. rockets 42(1), 182–185 (2005). doi: 10.2514/1.9054 ADSCrossRefGoogle Scholar
  47. Rios-Reyes, L., Scheeres, D.J.: Solar-sail navigation: estimation of force, moments, and optical parameters. J. Guid. Control. Dyn. 30(3), 660–668 (2007). doi: 10.2514/1.24340 ADSCrossRefGoogle Scholar
  48. Rodriguez-Solano, C.J., Hugentobler, U., Steigenberger, P.: Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv. Space Res. 49(7), 1113–1128 (2012). doi: 10.1016/j.asr.2012.01.016 ADSCrossRefGoogle Scholar
  49. Rubincam, D.: Radiative spin-up and spin-down of small asteroids. Icarus 148(1), 2–11 (2000). doi: 10.1006/icar.2000.6485 ADSCrossRefGoogle Scholar
  50. Rubincam, D.P.: Asteroid orbit evolution due to thermal drag. J. Geophys. Res. Planets 100(E1), 1585–1594 (1995). doi: 10.1029/94JE02411/full ADSCrossRefGoogle Scholar
  51. Scheeres, D.J.: The dynamical evolution of uniformly rotating asteroids subject to YORP. Icarus 188(2), 430–450 (2007). doi: 10.1016/j.icarus.2006.12.015 ADSCrossRefGoogle Scholar
  52. Simonelli, D.P., Thomas, P.C., Carcich, B.T., Veverka, J.: The generation and use of numerical shape models for irregular solar system objects. Icarus 103(1), 49–61 (1993). doi: 10.1006/icar.1993.1057 ADSCrossRefGoogle Scholar
  53. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: ACM transactions on graphics (TOG), ACM, vol. 21, pp. 527–536. http://dl.acm.org/citation.cfm?id=566612 (2002)
  54. Springer, T.A., Beutler, G., Rothacher, M.: A new solar radiation pressure model for GPS satellites. GPS Solut. 2(3), 50–62 (1999). doi: 10.1007/PL00012757 CrossRefGoogle Scholar
  55. Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. In: ACM transactions on graphics (TOG), ACM, vol. 25, pp. 967–976. http://dl.acm.org/citation.cfm?id=1141981 (2006)
  56. Tsander, F.A.: From a scientific heritage. Technical translation by NASA, NASA-TT-F-541. NASA, Washington, DC. http://ntrs.nasa.gov/search.jsp?R=19690016734 (1969)
  57. Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., et al.: Flight status of IKAROS deep space solar sail demonstrator. Acta Astron. 69(910), 833–840 (2011). doi: 10.1016/j.actaastro.2011.06.005 CrossRefGoogle Scholar
  58. Vokrouhlický, D.: A complete linear model for the Yarkovsky thermal force on spherical asteroid fragments. Astron. Astrophys. 344:362–366. http://adsabs.harvard.edu/full/1999A%26A...344..362V (1999)
  59. Vokrouhlický, D., Čapek, D.: YORP-induced long-term evolution of the spin state of small asteroids and meteoroids: Rubincam’s approximation. Icarus 159(2), 449–467 (2002). doi: 10.1006/icar.2002.6918 ADSCrossRefGoogle Scholar
  60. Vokrouhlický, D., Farinella, P.: The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for the plane-parallel case. Astron. J. 116(4):2032. http://iopscience.iop.org/article/10.1086/300565/meta (1998)
  61. Wild, W., Kardashev, N.S., Likhachev, S.F., Babakin, N.G., Arkhipov, V.Y., Vinogradov, I.S., et al.: Millimetron: a large Russian–European submillimeter space observatory. Exp. Astron. 23(1), 221–244 (2008). doi: 10.1007/s10686-008-9097-6
  62. Ziebart, M.: Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J. Spacecr. Rockets 41(5), 840–848 (2004). doi: 10.2514/1.13097 ADSCrossRefGoogle Scholar
  63. Zimin, V.N., Nerovnyi, N.A.: To the calculation of the main vector and the main momentum of light pressure force on a solar sail. Her. Bauman Mosc. State Tech. Univ. Ser. Mech. Eng. 106(1), 17–28 (2016). doi: 10.18698/0236-3941-2016-1-17-28. (in Russian) Google Scholar
  64. Zimin, V.N., Nerovnyy, N.A.: Analysis of the deformed shape of a heliogyro solar sail blade taking into account stress-dependent reflectivity of the material. Proc. High. Educ. Inst. Mach. Build. 658(1), 18–23. http://izvuzmash.ru/eng/catalog/calcmach/hidden/1125.html (2015) (in Russian)

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussian Federation
  2. 2.Astro Space Center of P.N. Lebedev Physical InstituteMoscowRussian Federation

Personalised recommendations