Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 126, Issue 4, pp 339–367 | Cite as

A general method for the generation and extension of collinear libration point orbits

  • Hanqing Zhang
  • Shuang Li
Original Article

Abstract

This paper is devoted to the study on applying numerical techniques to accurately compute and robustly extend the libration point orbits (LPOs). A new methodology is proposed exploiting the hyperbolic dynamics of the collinear libration points. Numerical tools are developed to facilitate the efficient computation process, which are applicable to realistic force models and inherently parallelizable. Extensive numerical explorations in the Earth–Moon system are carried out, revealing the delicate structures of nested island chains and bounded chaotic motions on the center manifold. Numerical results confirm that the proposed approach can handle the computations of various types of LPOs in a unified manner and is operational over a wide range of energy levels. LPOs obtained with this approach offer a broad range of future mission possibilities in an extended vicinity of the collinear libration points.

Keywords

Restricted three body problem Center manifold Libration point orbit (LPO) Quasi-periodic orbit 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11403013), the Fundamental Research Funds for the Central Universities (No. 56XAA14093, 56YAH12036) and Postdoctoral Foundation of Jiangsu Province (No. 1301029B).

References

  1. Astakhov, S.A., Burbanks, A.D., Wiggins, S., Farrelly, D.: Chaos-assisted capture of irregular moons. Nature 423(6937), 264–267 (2003)ADSCrossRefGoogle Scholar
  2. Barden, B.T., Howell, K.C.: Formation flying in the vicinity of libration point orbits. Adv. Astronaut. Sci. 99(z), 969–988 (1998)Google Scholar
  3. Barden, B.T., Howell, K.C.: Dynamical Issues Associated with Relative Configurations of Multiple Spacecraft Near the Sun-Earth/Moon L1 Point. In AAS/AIAA Astrodynamics Specialists Conference, Paper No. AAS99-450, 2307–2325 (1999)Google Scholar
  4. Breakwell, J.V., Brown, J.V.: The Halo family of three dimensional periodic orbits in the earth-moon restricted three body problem. Celest. Mech. 20(4), 389–404 (1979)ADSCrossRefMATHGoogle Scholar
  5. Brent, R.P.: Algorithms for Minimization without Derivatives, Chapter 4. Prentice-Hall, Englewood Cliffs, NJ (1973)Google Scholar
  6. Doedel, E.J., Romanov, V.A., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Gal’an-Vioque, J., Vanderbauwhede, A.: Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem. Int. J. Bifurcat. Chaos 17(08), 2625–2677 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. Farquhar, R.W.: Lunar communications with libration-point satellites. J. Spacecr. Rockets 4(10), 1383–1384 (1967)ADSCrossRefGoogle Scholar
  8. Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7(4), 458–473 (1973)ADSCrossRefMATHGoogle Scholar
  9. Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the RTBP. Physica D 157(4), 283–321 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. Gómez, G., Masdemont, J.J., Simó, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46(2), 135–176 (1998)MathSciNetGoogle Scholar
  11. Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Dynamics and Mission Design Near Libration Point Orbits, Vol. 3: Advanced Methods for Collinear Points. World Scientific, Singapore (2000)MATHGoogle Scholar
  12. Gómez, G., Jorba, A., Simó, C., Masdemont, J.J.: Dynamics and Mission Design Near Libration Points–Volume III: Advanced Method for Collinear Points, vol. 4. World Scientific, Singapore (2001a)Google Scholar
  13. Gómez, G., Llibre, J., Matinez, R., Simó, C.: Dynamics and Mission Design Near Libration Point Orbits — Volume I: Fundamentals: The Case of Collinear Libration Points, vol. 2. World Scientific, Singapore (2001b)Google Scholar
  14. Gómez, G., Koon, W.S., Lo, M.W., et al.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. Hechler, M., Cobos, J., d’Aiguablava, P.: Herschel, Planck and Gaia orbit design. In: International Conference on Library Point Orbits and Applications, 115–135. Girona, Spain (2002)Google Scholar
  16. Hénon, M.: Vertical stability of periodic orbits in the restricted problem. I. Equal masses. Astron. Astrophys. 28, 415 (1973)ADSMATHGoogle Scholar
  17. Hénon, M.: Generating Families in the Restricted Three-Body Problem. Lecture Notes in Physics Monographs, M52. Springer (1997)Google Scholar
  18. Hénon, M.: Generating Families in the Restricted Three-Body Problem. II Quantitative Study of Bifurcations. Lecture Notes in Physics Monographs, M65. Springer (2001)Google Scholar
  19. Howell, K.C.: Three-dimensional, periodic, Halo orbits. Celest. Mech. 32(1), 53–71 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. Howell, K.C., Pernicka, H.J.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. 41(1–4), 107–124 (1987)ADSCrossRefMATHGoogle Scholar
  21. Howell, K.C., Marchand, B.G., Lo, M.W.: Temporary satellite capture of short-period Jupiter family comets from the perspective of dynamical systems. J. Astronaut. Sci. 49(4), 539–557 (2001)MathSciNetGoogle Scholar
  22. Jorba, A., Masdemont, J.J.: Dynamics in the center manifold of the restricted three-body problem. Physica D 132, 189–213 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. Jorba, A., Villanueva, J.: Numerical computation of normal forms around some periodic orbits of the restricted three-body problem. Physica D 114(3), 197–229 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple Poincar’e sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astron. 112(1), 47–74 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinc connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. Koon, W.S., et al.: Dynamical systems, the three-body problem and space mission design. 9 (2008). Accessed 21Google Scholar
  27. Nacozy, P.E.: The use of integrals in numerical integrations of the N-body problem. Astrophys. Space Sci. 14(1), 40–51 (1971)ADSCrossRefGoogle Scholar
  28. Press, W.H., Flannery, B.P., Teukolsky, S.A., et al.: Numerical recipes: the art of scientific computing. Cambridge University Press, New York (1986)MATHGoogle Scholar
  29. Ren, Y., Shan, J.: A novel algorithm for generating libration point orbits about the collinear points. Celest. Mech. Dyn. Astron. 120(1), 57–75 (2014)ADSMathSciNetCrossRefGoogle Scholar
  30. Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22(3), 241–253 (1980a)Google Scholar
  31. Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control. Dyn. 3(6), 543–548 (1980b)Google Scholar
  32. Stiefel, E.L., Scheifele, G.: Linear and regular celestial mechanics. Perturbed two-body motion. Numerical methods. Canonical theory. Translated from the English edition. Moskva: Nauka, 303 (1975)Google Scholar
  33. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)MATHGoogle Scholar
  34. Szebehely, V., Bettis, D.G.: Recent developments of integrating the gravitational problem of N-bodies. Astrophys. Space Sci. 13(2), 365–376 (1971)ADSCrossRefMATHGoogle Scholar
  35. Villac, B.F., Scheeres, D.J.: A simple algorithm to compute hyperbolic invariant manifolds near L1 and L2. AAS/AIAA Spaceflight Mechanics Meeting, Maui, Hawaii, Paper AAS (2004)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Astronautics Engineering, College of AstronauticsNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of Astronautics Engineering, Space New Technology LaboratoryNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations