Celestial Mechanics and Dynamical Astronomy

, Volume 124, Issue 2, pp 127–144 | Cite as

On the integral inversion of satellite-to-satellite velocity differences for local gravity field recovery: a theoretical study

  • Mehdi Eshagh
  • Michal Šprlák
Original Article


The gravity field can be recovered locally from the satellite-to-satellite velocity differences (VDs) between twin-satellites moving in the same orbit. To do so, three different integral formulae are derived in this paper to recover geoid height, radial component of gravity anomaly and gravity disturbance at sea level. Their kernel functions contain the product of two Legendre polynomials with different arguments. Such kernels are relatively complicated and it may be impossible to find their closed-forms. However, we could find the one related to recovering the geoid height from the VD data. The use of spectral forms of the kernels is possible and one does not have to generate them to very high degrees. The kernel functions are well-behaving meaning that they reduce the contribution of far-zone data and for example a cap margin of \(7^{\circ }\) is enough for recovering gravity anomalies. This means that the inversion area should be larger by \(7^{\circ }\) from all directions than the desired area to reduce the effect of spatial truncation error of the integral formula. Numerical studies using simulated data over Fennoscandia showed that when the distance between the twin-satellites is small, higher frequencies of the anomalies can be recovered from the VD data. In the ideal case of having short distance between the satellites flying at 250 km level, recovering radial component of gravity anomaly with an accuracy of 7 mGal is possible over Fennoscandia, if the VD data is contaminated only with the spatial truncation error, which is an ideal assumption. However, the problem is that the power of VD signal is very low when the satellites are close and it is very difficult to recognise the signal amongst the noise of the VD data. We also show that for a successful determination of gravity anomalies at sea level from an altitude of 250 km mean VDs with better accuracy than 0.01 mm/s are required. When coloured noise at this level is used for the VDs at 250 km with separation of 300 km, the accuracy of recovery will be about 11 mGal over Fennoscandia. In the case of using the real velocities of the satellites, the main problems are downward/upward continuation of the VDs on the mean orbital sphere and taking the azimuthal integration of them.


Gravity anomaly recovery Ill-conditioning Satellite velocity  Spatial truncation error Twin satellites Velocity differences (VD) Satellite-to-satellite tracking (SST) 



Michal Šprlák was supported by the project GA15-08045S of the Czech Science Foundation. Thoughtful and constructive comments of two anonymous reviewers are gratefully acknowledged.


  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. US Department of Commerce, National Bureau of Standards, Washington, DC, USA (1972)Google Scholar
  2. Anli, F., Gungor, S.: Some useful properties of Legendre polynomials and its applications to neutron transport equation in slab geometry. Appl. Math. Model. 31, 727–733 (2007)CrossRefMATHGoogle Scholar
  3. Balmino, G., Perosanz, F., Rummel, R., Sneeuw, N., Suenkel, H.: CHAMP, GRACE and GOCE: mission concepts and simulations. Boll. Geofis. Teor. Appl. 40(3–4), 309–320 (2001)Google Scholar
  4. Bentel, K., Gerlach, C.: A closed-loop simulation on regional modelling of gravity changes from GRACE. In: Rizos, C., Willis, P. (eds.) Earth on the Edge: Science for Sustainable Planet, International Association of Geodesy Symposia, pp. 89–95. Springer, Berlin (2014)CrossRefGoogle Scholar
  5. Bjerhammar, A.: On the energy integral for satellites. The Royal Institute of Technology (KTH). Division of Geodesy, Stockholm, Sweden (1968)Google Scholar
  6. Eicker, A.: Gravity field refinement by radial basis functions from in-situ satellite data. Deutsche Geodätische Kommission, Reihe C, Nr. 676, München, Germany (2012)Google Scholar
  7. Eicker, A., Mayer-Guerr, T., Ilk, K.H.: Improved resolution of a GRACE gravity field model by regional refinements. In: Sideris, M.G. (ed.) Observing our Changing Earth, International Association of Geodesy Symposia, pp. 99–104. Springer, Berlin (2009)Google Scholar
  8. Eshagh, M.: On satellite gravity gradiometry, Ph.D. thesis in Geodesy, Royal Institute of Technology (KTH), Stockholm, Sweden (2009)Google Scholar
  9. Eshagh, M.: Inversion of satellite gradiometry data using statistically modified integral formulas for local gravity field recovery. Adv. Space Res. 47(1), 74–85 (2011a)CrossRefADSGoogle Scholar
  10. Eshagh, M.: Sequential Tikhonov regularisation: an alternative way for integral inversion of satellite gradiometry data. Z. Vermess. 135(2), 113–121 (2011b)Google Scholar
  11. Eshagh, M.: The effect of spatial truncation error on integral inversion of satellite gravity gradiometry data. Adv. Space Res. 47, 1238–1247 (2011c)CrossRefADSGoogle Scholar
  12. Eshagh, M., Abdollahzadeh, M.: The effect of geopotential perturbations of GOCE on its observations: a numerical study. Acta Geod. Geophys. Hung. 44(4), 385–398 (2009)CrossRefGoogle Scholar
  13. Eshagh, M., Sjöberg, L.E.: Determination of gravity anomaly at sea level from inversion of satellite gravity gradiometric data. J. Geodyn. 51, 366–377 (2011)CrossRefGoogle Scholar
  14. Eshagh, M., Ghorbannia, M.: The use of Gaussian equations of motions of a satellite for local gravity anomaly recovery. Adv. Space Res. 52(1), 30–38 (2013)CrossRefADSGoogle Scholar
  15. Eshagh, M., Ghorbannia, M.: The effect of spatial truncation error on variance of gravity anomalies derived from inversion of satellite orbital and gradiometric data. Adv. Space Res. 54(2), 261–271 (2014)CrossRefADSGoogle Scholar
  16. Eshagh, M., Lemoine, J.M., Gegout, P., Biancale, R.: On regularized time varying gravity field models based on GRACE data and their comparison with hydrological models. Acta Geophys. 61(1), 1–17 (2013)CrossRefADSGoogle Scholar
  17. Fengler, M.J., Freeden, W., Kohlhaas, A., Michel, V., Peters, T.: Wavelet modeling of regional and temporal variations of the Earth’s gravitational potential observed by GRACE. J. Geod. 81, 5–15 (2007)CrossRefADSMATHGoogle Scholar
  18. Garcia, R.V.: Local geoid determination from GRACE mission. Report no. 460, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, USA (2002)Google Scholar
  19. Gruber, C., Moon, Y., Flechtner, F., Dahle, C., Novák, P., Koenig, R., Neumayer, H.: Submonthly GRACE solutions from localizing integral equations and Kalman filtering. In: Rizos, C., Willis, P. (Eds.) Earth on the Edge: Science for Sustainable Planet, International Association of Geodesy Symposia, vol. 139, pp. 383–389 (2014)Google Scholar
  20. Hajela, D.P.: Improved procedures for the recovery of \(5^{\circ }\) mean gravity anomalies from ATS-6/GEOS-3 satellite-to-satellite range-rate observations. Report no. 276, Department of Geodetic Science, Ohio State University, Columbus, USA (1974)Google Scholar
  21. Hajela, D.P.: A simulation study to test the prediction of \(1^{\circ } \times 1^{\circ }\) mean gravity anomalies using least squares collocation from GRAVSAT mission. Report no. 316, Department of Geodetic Science, Ohio State University, Columbus, USA (1981)Google Scholar
  22. Han, S.-C., Shum, C.K., Braun, A.: High-resolution continental water storage recovery from low–low satellite-to-satellite tracking. J. Geodyn. 39, 11–28 (2005a)CrossRefGoogle Scholar
  23. Han, S.-C., Shum, C.K., Jekeli, C., Alsdorf, D.: Improved estimation of terrestrial water storage changes from GRACE. Geophys. Res. Lett. 32, L07302 (2005b)ADSGoogle Scholar
  24. Han, S.-C., Ditmar, P.: Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions. J. Geod. 82, 423–430 (2008)CrossRefADSGoogle Scholar
  25. Han, S.-C., Rowlands, D.D., Luthcke, S.B., Lemoine, F.: Localized analysis of satellite tracking data for studying time-variable Earth’s gravity field. J. Geophys. Res. 113, B06401 (2008)ADSGoogle Scholar
  26. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)CrossRefGoogle Scholar
  27. Heiskanen, W.A., Moritz, H.: Physical Geodesy. W.H. Freeman and Co., San Francisco (1967)Google Scholar
  28. Janák, J., Fukuda, Y., Xu, P.: Application of GOCE data for regional gravity field modeling. Earth Planets Space 61, 835–843 (2009)CrossRefADSGoogle Scholar
  29. Jekeli, C.: The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astron. 75, 85–101 (1999)CrossRefADSMATHGoogle Scholar
  30. Jekeli, C., Rapp, R.H.: Accuracy of the determination of mean anomalies and neam geoid undulations from a satellite gravity mapping mission. Report no. 307, Department of Geodetic Science, The Ohio State University, Columbus, USA (1980)Google Scholar
  31. Keller, W., Sharifi, M.A.: Satellite gradiometry using a satellite pair. J. Geod. 75, 544–557 (2005)CrossRefADSGoogle Scholar
  32. Kotsakis, C.: A covariance-adaptive approach for regularized inversion in linear models. Geophys. J. Int. 171, 509–522 (2007)CrossRefADSGoogle Scholar
  33. Moritz, H.: Geodetic reference system 1980. J. Geod. 74, 128–133 (2000)CrossRefADSGoogle Scholar
  34. Novák, P.: Integral inversion of GRACE-type data. Stud. Geophys. Geod. 51, 351–367 (2007)CrossRefADSGoogle Scholar
  35. Obenson, G.: Direct evaluation of the earh’s gravity anomaly field from orbital analysis of artificial Earth satellites. Report no. 3, Department of Geodetic Science, Ohio State University, Columbus, USA (1970)Google Scholar
  36. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: The development and evaluation of the Earth gravitational model 2008 (EGM2008). J. Geophys. Res. Solid Earth 117, B04406 (2012)CrossRefADSGoogle Scholar
  37. Pick, M., Pícha, J., Vyskočil, V.: Theory of the Earth Gravity Field. Elsevier, Amsterdam (1973)MATHGoogle Scholar
  38. Ramillien, G., Famiglietti, J.S., Wahr, J.: Detection of continental hydrology and glaciology signals from GRACE: a review. Surv. Geophys. 29, 361–374 (2008)CrossRefADSGoogle Scholar
  39. Ramillien, G., Biancale, R., Gratton, S., Vasseur, X., Bourgogne, S.: GRACE-derived surface water mass anomalies by energy integral approach: application to continental hydrology. J. Geod. 85, 313–328 (2011)CrossRefADSGoogle Scholar
  40. Ramillien, G.L., Seoane, L., Frappart, F., Biancale, R., Gratton, S., Vasseur, X., et al.: Constrained regional recovery of continental water mass time-variations from GRACE-based geopotential anomalies over South America. Surv. Geophys. 33, 887–905 (2012)CrossRefADSGoogle Scholar
  41. Reed, G.B.: Application of kinematical geodesy for determining the short wavelength component of the gravity field by satellite gradiometry. Report no. 201, Department of Geodetic Science, Ohio State University, Columbus, USA (1973)Google Scholar
  42. Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.-M., König, R., Loyer, S., Neumayer, H., Marty, J.C., Barthelmes, F., Perosanz, F., Zhu, S.Y.: A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys. Res. Lett. 29(14), 37:1–4 (2002)Google Scholar
  43. Rowlands, D.D., Luthcke, S.B., Klosko, S.M., Lemoine, F.G.R., Chinn, D.S., McCarthy, J.J., et al.: Resolving mass flux at high spatial and temporal resolution using GRACE inter satellite measurements. Geophys. Res. Lett. 32, L04310 (2005)CrossRefADSGoogle Scholar
  44. Rummel, R.: Downward continuation of gravity field information from satellite to satellite tracking or satellite gradiometry in local areas. Report no. 221, Department of Geodetic Science, Ohio State University, Columbus, USA (1975)Google Scholar
  45. Rummel, R., Rapp, R.H., Sjöberg, L.E.: The determination of gravity anomalies from geoid heights using inverse Stokes formula. Report no. 269, Department of Geodetic Science, The Ohio State University, Columbus, USA (1978a)Google Scholar
  46. Rummel, R., Reigber, C., Ilk, K.H.: The use of satellite-to-satellite tracking for gravity parameters recovery. ESA SP 137, 153–161 (1978b)Google Scholar
  47. Rummel, R.: Geoid heights, geoid height differences, and mean gravity anomalies from low-low satellite-to-satellite tracking – an error analysis. Report no. 306, Department of Geodetic Science, Ohio State University, Columbus, USA (1980)Google Scholar
  48. Schmeer, M., Schmidt, M., Bosch, W., Seitz, F.: Separation of mass signals within GRACE monthly gravity field models by means of empirical orthogonal functions. J. Geodyn. 59–60, 124–132 (2012)CrossRefGoogle Scholar
  49. Schmidt, M., Fengler, M., Mayer-Guerr, T., Eicker, A., Kusche, J., Sánchez, L., et al.: Regional gravity modeling in terms of spherical base functions. J. Geod. 81, 17–38 (2007)CrossRefADSMATHGoogle Scholar
  50. Seeber, G.: Satellite Geodesy. Walter de Gruyter, Berlin (2003)CrossRefGoogle Scholar
  51. Sjöberg, L.E.: On the recovery of potential coefficients by the use of the energy integral for satellites. Royal Institute of Technology (KTH), Stockholm, Sweden (1978)Google Scholar
  52. Sjöberg, L.E.: On the recovery of geopotential coefficients using satellite-to-satellite range-rate data on a sphere. B. Geod. 56, 27–39 (1982)CrossRefADSGoogle Scholar
  53. Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., et al.: GGM02–an improved Earth gravity field model from GRACE. J. Geod. 79, 467–478 (2005)CrossRefADSGoogle Scholar
  54. Tóth, G., Földváry, L.: Effect of geopotential model errors in the projection of GOCE gradiometer observables, IAG symposia. In: Jekeli, C., Bastos, J., Fernandes, L. (eds.) Gavity, Geoid and Space Missions, vol. 129, pp. 72–76. Spriner, Berlin (2005)CrossRefGoogle Scholar
  55. Tscherning, C.C.: A Study of Satellite Altitude Influence on the Sensitivity of Gravity Gradiometer Measurements. DGK, Müncheny (1988)Google Scholar
  56. Tscherning, C.C.: A local study of the influence of sampling rate, number of observed components and instrument noise on 1 deg. mean geoid and gravity anomalies determined from satellite gravity gradiometer measurements. Ric. Geod. Topogr. Fotogram 5, 139–146 (1989)Google Scholar
  57. Visser, P.: The Use of Satellites in Gravity Field Determination and Adjustment. Ph.D. Dissertation, Delft University Press, Delft, Netherlands (1992)Google Scholar
  58. Wahba, G.: A survey of some smoothing problems and the methods of generalized cross-validation for solving them. In: Krishnaiah, P.R. (Ed.) Proceedings of the conference on the applications of Statistics, Dayton, Ohio, USA, June 14–17 (1976)Google Scholar
  59. Weigelt, W., Antoni, M., Keller, W.: Regional gravity field recovery from GRACE using optimized radial base functions. In: Mertikas, S.P. (ed.) Gravity, Geoid and Earth Observation, International Association of Geodesy Symposia, vol. 135, pp. 139–146. Springer, Berlin (2010)CrossRefGoogle Scholar
  60. Wolff, M.: Direct measurements of the Earth’s gravitational potential using a satellite pair. J Geophys. Res. 74, 5295–5300 (1969)CrossRefADSGoogle Scholar
  61. Xu, P.: Determination of surface gravity anomalies using gradiometric observables. Geophys. J. Int. 110, 321–332 (1992)CrossRefADSGoogle Scholar
  62. Xu, P.: Truncated SVD methods for discrete linear ill-posed problems. Geophys. J. Int. 135, 505–514 (1998)CrossRefADSGoogle Scholar
  63. Yildiz, H.: A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation. Stud. Geophys. Geod. 56, 171–184 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Engineering ScienceUniversity WestTrollhättanSweden
  2. 2.NTIS - New Technologies for the Information Society, Faculty of Applied SciencesUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations