Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 123, Issue 3, pp 305–323 | Cite as

The Lin–Shu type density wave structure of our Galaxy: line-of-sight velocities of 396 HII regions

  • E. Griv
  • L.-G. Hou
  • I.-G. Jiang
Original Article

Abstract

In this fifth paper in a series, we check again the Lin–Shu idea of small-amplitude density waves in our Galaxy. The updated catalogue of Galactic objects of Hou and Han (Hou and Han in Astron Astrophys 569:125–146, 2014), available in the literature, is used. The line-of-sight velocity field of 396 HII regions with known trigonometric or photometric distances and their uncertainties within 4 kpc from the Sun is investigated in terms of a wave perturbation. Our previous study is enlarged by examining the secondary minima of the residual sum of squares of the predicted and measured velocities of a sample of objects in a considerable region surrounding the Sun. Both the geometrical and physical parameters of the wave pattern are evaluated. Here we show, for the first time, that the local Cygnus–Orion spiral arm, where the Sun is located, does form a part of the major density wave structure of the system under the question but is not a spur originating at the inner Carina–Sagittarius arm or at the outer Perseus arm.

Keywords

Galaxy Galaxy kinematics Spiral structure Cygnus-Orion spiral arm 

Notes

Acknowledgments

The authors have benefited from numerous discussions with David Eichler, Alex Kaganovich, Edward Liverts and Yury Luybarsky. It is a special pleasure to thank Michael Gedalin for his informative comments and important suggestions that have improved this work. Irena Zlatopolsky provided valuable technical assistance. We also wishes to thank the anonymous referee for helping improve the manuscript. A late part of this work was done while one of us (EG) was visiting the National Tsing-Hua University, thanks to an NSC month long visitor grant. EG is grateful to Ing-Guey Jiang and Wen-Ping Chen for the hospitality they and their colleagues extended to EG in Hsin-Chu and Jhong-Li. We gratefully acknowledge support from the Israel Science Foundation, the Binational U.S.-Israel Science Foundation, the Israeli Ministry of Immigrant Absorption in the framework of the program “KAMEA,” the National Natural Science Foundation of China and the National Science Council in Taiwan.

References

  1. Anderson, L.D., Bania, T.M., Balser, D.S., Cunningham, V., Wenger, T.V., Johnstone, B.M., et al.: The WISE catalog of galactic H II regions. ApJS 212, 1–18 (2014)ADSCrossRefGoogle Scholar
  2. Bajkova, A.T., Bobylev, V.V.: Redetermination of galactic spiral density wave parameters based on spectral analysis of masers radial velocities. Astron. Lett. 38, 549–561 (2012)ADSCrossRefGoogle Scholar
  3. Barros, D.A., Lépine, J.R.D., Junqueira, T.C.: A Galactic ring of minimum stellar density near the solar orbit radius. MNRAS 435, 2299–2321 (2013)ADSCrossRefGoogle Scholar
  4. Bertin, G., Mark, J.W.-K.: Density wave theory for spiral galaxies: the regime of finite spiral arm inclination in stellar dynamics. Astron. Astrophys. 64, 389–397 (1978)ADSGoogle Scholar
  5. Bertin, G., Lau, Y.Y., Lin, C.C., Mark, J.W.-K., Sugiyama, L.: Discrete spiral modes in disk galaxies: some numerical examples based on density wave theory. Proc. Natl. Acad. Sci. USA 74, 4726–4729 (1977)ADSCrossRefGoogle Scholar
  6. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)MATHGoogle Scholar
  7. Bobylev, V.V., Bajkova, A.T.: Galactic kinematics from a sample of young massive stars. Astron. Lett. 39, 532–549 (2013)ADSCrossRefGoogle Scholar
  8. Bovy, J., Prieto, C.A., Beers, T.C., Bizyaev, D., et al.: The Milky Way’s circular-velocity curve between 4 and 14 kpc from APOGEE data. Astrophys. J. 759, 131–151 (2012)ADSCrossRefGoogle Scholar
  9. Burns, R.A., Nagayama, T., Handa, T., Omodaka, T., et al.: Trigonometric distance and proper motion of Iras 20056+3350: a massive star-forming region on the solar circle. Astrophys. J. 797, 39–48 (2014)ADSCrossRefGoogle Scholar
  10. Choi, Y.K., Hachisuka, K., Reid, M.J., Xu, Y., Brunthaler, A., Menten, K.M., et al.: Trigonometric parallaxes of star forming regions in the Perseus spiral arm. Astrophys. J. 790, 99–115 (2014)ADSCrossRefGoogle Scholar
  11. Crézé, M., Mennessier, M.O.: An attempt to interpret the mean properties of the velocity field of young stars in terms of Lin’s theory of spiral waves. Astron. Astrophys. 27, 281–289 (1973)ADSGoogle Scholar
  12. Dehnen, W., Binney, J.J.: Local stellar kinematics from HIPPARCOS data. MNRAS 298, 387–394 (1998)ADSCrossRefGoogle Scholar
  13. D’Onghia, E., Vogelsberger, M., Hernquist, L.: Self-perpetuating spiral arms in disk galaxies. Astrophys. J. 766, 34–48 (2013)ADSCrossRefGoogle Scholar
  14. Drimmel, R.: Evidence for a two-armed spiral in the Milky Way. Astron. Astrophys. 358, L13–L16 (2000)ADSGoogle Scholar
  15. Efremov, Yu.N.: On the spiral structure of the Milky Way Galaxy. Astron. Rep. 55, 108–122 (2011)Google Scholar
  16. Falceta-Gonçalves, D., Bonnell, I., Kowal, G., Lépine, J.R.D., Braga, C.A.S.: The onset of large-scale turbulence in the interstellar medium of spiral galaxies. MNRAS 446, 973–989 (2015)ADSCrossRefGoogle Scholar
  17. Faure, C., Siebert, A., Famaey, B.: Radial and vertical flows induced by galactic spiral arms: likely contributors to our ‘wobbly Galaxy’. MNRAS 440, 2564–2575 (2014)ADSCrossRefGoogle Scholar
  18. Fernández, D., Figueras, F., Torra, J.: Kinematics of young stars-II. Galactic spiral structure. Astron. Astrophys. 372, 833–850 (2001)ADSCrossRefGoogle Scholar
  19. Foster, T.J., Brunt, C.M.: A CGPS look at the spiral structure of the outer Milky Way. I. Distances and velocities to star forming regions, arXiv:1405.7003F (2014)
  20. Fridman, A.M.: On the dynamics of a viscous differentially rotating gravitating medium. Sov. Astron. Lett. 15, 487–491 (1989)ADSGoogle Scholar
  21. Fridman, A.M., Polyachenko, V.L.: Physics of Gravitating Systems, vol. 1 & 2. Springer, New York (1984)CrossRefGoogle Scholar
  22. Fujii, M.S., Baba, J., Saitoh, T.R., Makino, J., Kokubo, E., Wada, K.: The dynamics of spiral arms in pure stellar disks. Astrophys. J. 730, 109–123 (2011)ADSCrossRefGoogle Scholar
  23. García-Lorenzo, B., Márquez, I., Barrera-Ballesteros, J.K., Masegosa, J., et al.: Ionized gas kinematics of galaxies in the CALIFA survey. I. Velocity fields, kinematic parameters of the dominant component, and presence of kinematically distinct gaseous systems. Astron. Astrophys. 573, 59–102 (2015)ADSCrossRefGoogle Scholar
  24. Grand, R.J.J., Kawata, D., Cropper, M.: The dynamics of stars around spiral arms. MNRAS 421, 1529–1538 (2012)ADSCrossRefGoogle Scholar
  25. Griv, E., Gedalin, M.: Exploring local \(N\)-body simulations of Saturn’s rings. Planet. Space Sci. 53, 461–472 (2005)ADSCrossRefGoogle Scholar
  26. Griv, E., Gedalin, M.: Fine-scale density wave structure of Saturn’s rings: a hydrodynamic theory. Astron. Astrophys. 521, 46–61 (2010)ADSCrossRefGoogle Scholar
  27. Griv, E., Gedalin, M.: Stability of galactic discs: finite arm-inclination and finite-thickness effects. MNRAS 422, 600–609 (2012)ADSCrossRefGoogle Scholar
  28. Griv, E., Gedalin, M., Eichler, D., Yuan, C.: Landau excitation of spiral density waves in an inhomogeneous disk of stars. Phys. Rev. Lett. 84, 4280–4283 (2000)ADSCrossRefGoogle Scholar
  29. Griv, E., Gedalin, M., Yuan, C.: Quasi-linear theory of the Jeans instability in disk-shaped galaxies. Astron. Astrophys. 383, 338–351 (2002)ADSCrossRefGoogle Scholar
  30. Griv, E., Gedalin, M., Yuan, C.: Spiral galaxies as gravitational plasmas. Adv. Space Res. 38, 47–56 (2006)ADSCrossRefGoogle Scholar
  31. Griv, E., Jiang, I.-G.: A model for the Lin–Shu type density-wave structure of our Galaxy: line-of-sight and transverse-longitudinal velocities of 242 optically visible open clusters. Astron. Nachr. 336, 196–207 (2015)ADSCrossRefGoogle Scholar
  32. Griv, E., Lin, C.-C., Ngeow, C.-C., Jiang, I.-G.: The spiral density-wave structure of our own Galaxy as traced by open clusters: least-squares analysis of line-of-sight velocities. New Astron. 29, 9–17 (2014)ADSCrossRefGoogle Scholar
  33. Griv, E., Liverts, E., Mond, M.: Angular momentum transport in astrophysical disks. Astrophys. J. Lett. 672, L127–L130 (2008)ADSCrossRefGoogle Scholar
  34. Griv, E., Ngeow, C.-C., Jiang, I.-G.: Fitting the Lin–Shu-type density-wave theory for our own Galaxy. MNRAS 433, 2511–2516 (2013)ADSCrossRefGoogle Scholar
  35. Griv, E., Jiang, I.-G., Russeil, D.: Parameters of the Galactic density-wave spiral structure: line-of-sight velocities of 156 star-forming regions. New Astron. 35, 40–47 (2015)ADSCrossRefGoogle Scholar
  36. Griv, E., Wang, H.-H.: Density wave formation in differentially rotating disk galaxies: hydrodynamic simulation of the linear regime. New Astron. 30, 8–27 (2014)ADSCrossRefGoogle Scholar
  37. Grivnev, E.M.: Galactic spiral structure and the kinematics of HII regions. Sov. Astron. Lett. 7, 303–305 (1981)ADSGoogle Scholar
  38. Hedman, M.M., Nicholson, P.D.: Kronoseismology: using density waves in Saturn’s C ring to probe the planet’s interior. Astron. J 146, 12–28 (2013)ADSCrossRefGoogle Scholar
  39. Henry, A.L., Quillen, A.C., Gutermuth, R.: Star formation and asymmetry in the spiral arms of M51: variable star formation caused by more than one spiral density wave. Astron. J. 126, 2831–2839 (2003)ADSCrossRefGoogle Scholar
  40. Honig, Z.N., Reid, M.J.: Characteristics of spiral arms in late-type galaxies. Astrophys. J. 800, 53–61 (2015)ADSCrossRefGoogle Scholar
  41. Hou, L.G., Han, J.L., Shi, W.B.: The spiral structure of our Milky Way Galaxy. Astron. Astrophys. 499, 473–482 (2009)ADSCrossRefGoogle Scholar
  42. Hou, L.G., Han, J.L.: The observed spiral structure of the Milky Way. Astron. Astrophys. 569, 125–146 (2014)ADSCrossRefGoogle Scholar
  43. Jones, C., Dickey, J.M., Dawson, J.R., McClure-Griffiths, N.M., Anderson, L.D., Bania, T.M.: HI absorption toward HII regions at small galactic longitudes. Astrophys. J. 774, 117–135 (2013)ADSCrossRefGoogle Scholar
  44. Jurić, M., Ivezić, Ž., Brooks, A., Lupton, R.H., et al.: The Milky Way tomography with SDSS. I. Stellar number density distribution. Astrophys. J. 673, 864–914 (2008)ADSCrossRefGoogle Scholar
  45. Kalnajs, A.J.: The damping of the galactic density waves by their induced shocks. Astrophys. Lett. 11, 41–43 (1972)ADSGoogle Scholar
  46. Kharadze, E.K., Bartaya, R.A., Dluzhnevskaya, O.B., Piskunov, A.E., Pavlovskaya, E.D.: Population of the galactic disc in the solar neighbourhood. I. Parameters of spatial distribution for stellar groups of A-K spectral and III–V luminosity classes. Astrophys. Space Sci. 151, 319–334 (1989)ADSCrossRefGoogle Scholar
  47. Kharchenko, N.V., Piskunov, A.E., Schilbach, E., Röser, S., Scholz, R.-D.: Global survey of star clusters in the Milky Way. II. The catalogue of basic parameters. Astron. Astrophys. 558, 53–61 (2013)ADSCrossRefGoogle Scholar
  48. Khoperskov, A.V., Just, A., Korchagin, V.I., Jalali, M.A.: High resolution simulations of unstable modes in a collisionless disc. Astron. Astrophys. 473, 31–40 (2007)ADSCrossRefGoogle Scholar
  49. Kretschmer, K., Diehl, R., Krause, M., Burkert, A., Fierlinger, K., Gerhard, O., et al.: Kinematics of massive star ejecta in the Milky Way as traced by \(^{26}\)Al. Astron. Astrophys. 559, 99–110 (2013)ADSCrossRefGoogle Scholar
  50. Lau, Y.Y., Bertin, G.: Discrete spiral modes, spiral waves, and the local dispersion relationship. Astrophys. J. 226, 508–520 (1978)ADSCrossRefGoogle Scholar
  51. Lau, Y., Lin, C.C., Mark, J.W.-K.: Unstable spiral modes in disk-shaped galaxies. Proc. Natl. Acad. Sci. USA 74, 1379–1381 (1976)ADSCrossRefGoogle Scholar
  52. Laughlin, G., Różyczka, M.: The effect of gravitational instabilities on protostellar disks. Astrophys. J. 456, 279–291 (1996)ADSCrossRefGoogle Scholar
  53. Lin, C.C.: Theory of spiral structure. Highlights Astron. 2, 88–121 (1971)ADSCrossRefGoogle Scholar
  54. Lin, C.C., Lau, Y.Y.: Density wave theory of spiral structure of galaxies. Stud. Appl. Math. 60, 97–163 (1979)MathSciNetADSCrossRefGoogle Scholar
  55. Lin, C.C., Shu, F.H.: On the spiral structure of disk galaxies. Astrophys. J. 140, 646–655 (1964)MathSciNetADSCrossRefGoogle Scholar
  56. Lin, C.C., Shu, F.H.: On the spiral structure of disk galaxies. II. Outline of a theory of density waves. Proc. Natl. Acad. Sci. USA 55, 229–234 (1966)ADSCrossRefGoogle Scholar
  57. Lin, C.C., Yuan, C., Roberts, W.W.: On the stellar streaming motions and the observational determination of the structural constants of the Galaxy. Astron. Astrophys. 69, 181–198 (1978)ADSGoogle Scholar
  58. Lin, C.C., Yuan, C., Shu, F.H.: On the spiral structure of disk galaxies. III. Comparison with observations, Astrophys. J. 155, 721–746 (erratum, 156, 797) (1969)Google Scholar
  59. Lynden-Bell, D., Kalnajs, A.: On the generating mechanism of spiral structure. MNRAS 157, 1–30 (1972)ADSCrossRefGoogle Scholar
  60. Mata-Chávez, M.D., Gómez, G.C., Puerari, I.: Analysis of the spiral structure in a simulated galaxy. MNRAS 444, 3756–3760 (2014)ADSCrossRefGoogle Scholar
  61. Michael, S., Steiman-Cameron, T.Y., Durisen, R.H., Boley, A.C.: Convergence studies of mass transport in disks with gravitational instabilities. I. The constant cooling time case. Astrophys. J. 746, 98–109 (2012)ADSCrossRefGoogle Scholar
  62. Mihalas, D., Binney, J.: Galactic Astronomy, 2nd edn. Freeman, San Francisco (1998)Google Scholar
  63. Mikhailovskii, A.B., Fridman, A.M.: ‘Fast’ and ‘slow’ density waves in spiral galaxies. Sov. Astron. 17, 57–61 (1973)ADSGoogle Scholar
  64. Mishurov, Yu.N., Pavlovskaya, E.D., Suchkov, A.A.: Galactic spiral structure parameters derived from stellar kinematics. Sov. Astron. 23, 147–152 (1979)Google Scholar
  65. Mishurov, Yu.N., Zenina, I.A.: Parameters of the Galactic rotation curve and spiral pattern from Cepheid kinematics. Astron. Rep. 43, 487–493 (1999)Google Scholar
  66. Mishurov, Yu.N., Zenina, I.A., Dambis, A.K., Melnik, A.M., Rastorguev, A.S.: Is the Sun located near the corotation circle? Astron. Astrophys. 323, 775–780 (1997)Google Scholar
  67. Montenegro, L.E., Yuan, C., Elmegreen, B.G.: Curvature and acoustic instabilities in rotating fluid disks. Astrophys. J. 520, 592–606 (1999)ADSCrossRefGoogle Scholar
  68. Morozov, A.G.: On the stability of an inhomogeneous disk of stars. Sov. Astron. 24, 391–394 (1980)ADSGoogle Scholar
  69. Morozov, A.G.: Constraints on the radial velocity dispersion of stars in the disk of a flat galaxy. Sov. Astron. Lett. 7, 109–111 (1981)ADSGoogle Scholar
  70. Morozov, A.G.: A local stability criterion for the gaseous subsystem of a flat galaxy. Sov. Astron. 29, 120–124 (1985)ADSGoogle Scholar
  71. Morozov, A.G., Torgashin, Yu.M., Fridman, A.M.: Turbulent viscosity in a gravitating gaseous disk. Sov. Astron. Lett. 11, 94–97 (1985)Google Scholar
  72. Muto, T., Grady, C.A., Hashimoto, J., Fukagawa, M., et al.: Discovery of small-scale spiral structures in the disk of SAO 206462 (HD 135344B): implications for the physical state of the disk from spiral density wave theory. Astrophys. J 748, L22–L29 (2012)ADSCrossRefGoogle Scholar
  73. Ngeow, C.-C.: On the application of Wesenheit function in deriving distance to Galactic Cepheids. Astrophys. J 747, 50–60 (2012)ADSCrossRefGoogle Scholar
  74. Pasha, I.I., Smirnov, M.A.: On the direction of rotation of the spirals in galaxies. Astrophys. Space Sci. 86, 215–224 (1982)ADSCrossRefGoogle Scholar
  75. Pavlovskaya, E.D., Suchkov, A.A.: Galactic spiral structure parameters: error estimates by numerical experiments. Sov. Astron. 24, 164–173 (1980)ADSGoogle Scholar
  76. Reid, M.J.: Galactic structure from trigonometric parallaxes of star-forming regions, in Advancing the Physics of Cosmic Distances, IAU Symp. 289, ed. R. de Grijs (IAU), 188-193 (2013)Google Scholar
  77. Reid, M.J., Menten, K.M., Brunthaler, A., Zheng, X.W., et al.: Trigonometric parallaxes of high mass star forming regions: the structure and kinematics of the Milky Way. Astrophys. J. 783, 130–144 (2014)ADSCrossRefGoogle Scholar
  78. Reid, M.J., Menten, K.M., Zheng, X.W., Brunthaler, A., et al.: Trigonometric parallaxes of massive star-forming regions. VI. Galactic structure, fundamental parameters, and noncircular motions. Astrophys. J 700, 137–148 (2009)ADSCrossRefGoogle Scholar
  79. Rix, H.-W., Bovy, J.: The Milky Way’s stellar disk. Mapping and modeling the Galactic disk. Astron. Astrophys. Rev. 21, 61–119 (2013)ADSCrossRefGoogle Scholar
  80. Roberts, W.W.: Large-scale shock formation in spiral galaxies and its implications on star formation. Astrophys. J 158, 123–143 (1969)ADSCrossRefGoogle Scholar
  81. Roberts, W.W., Shu, F.H.: The role of gaseous dissipation in density waves of finite amplitude. Astrophys. Lett. 12, 49–52 (1972)ADSGoogle Scholar
  82. Roberts, W.W., Yuan, C.: Application of the density-wave theory to the spiral structure of the Milky Way system. III. Magnetic field: large-scale hydromagnetic shock formation. Astrophys. J. 161, 877–902 (1970)ADSCrossRefGoogle Scholar
  83. Rohlfs, K.: The local linearized velocity field in the presence of a spiral density wave. Astron. Astrophys. 17, 246–252 (1972)ADSGoogle Scholar
  84. Rohlfs, K.: Lectures on Density Wave Theory. Lecture Notes in Physics 69. Springer, Berlin (1977)Google Scholar
  85. Roškar, R., Debattista, V., Quinn, T.R., Wadsley, J.: Radial migration in disc galaxies. I. Transient spiral structure and dynamics. MNRAS 426, 2089–2106 (2012)ADSCrossRefGoogle Scholar
  86. Russeil, D.: Star-forming complexes and the spiral structure of our Galaxy. Astron. Astrophys. 397, 133–146 (2003)ADSCrossRefGoogle Scholar
  87. Sanna, A., Reid, M.J., Dame, T.M., Menten, K.M., et al.: Trigonometric parallaxes of massive star-forming regions. IX. The Outer arm in the first quadrant. Astrophys. J. 745, 82–89 (2012)ADSCrossRefGoogle Scholar
  88. Sato, M., Wu, Y.W., Immer, K., Zhang, B., et al.: Trigonometric parallaxes of star forming regions in the Scutum spiral arm. Astrophys. J. 793, 72–87 (2014)ADSCrossRefGoogle Scholar
  89. Sellwood, J., Carlberg, R.G.: Transient spirals as superposed instabilities. Astrophys. J. 785, 137–149 (2014)ADSCrossRefGoogle Scholar
  90. Schöenrich, R., Binney, J., Dehnen, W.: Local kinematics and the local standard of rest. MNRAS 403, 1829–1833 (2010)ADSCrossRefGoogle Scholar
  91. Shu, F.H.: On the density-wave theory of galactic spirals. II. The propagation of the density of wave action, Astrophys. J. 160, 99–112 (1970)ADSCrossRefGoogle Scholar
  92. Shu, F.H., Milione, V., Gebel, W., Yuan, C., Goldsmith, D.W., Roberts, W.W.: Galactic shocks in an interstellar medium with two stable phases. Astrophys. J. 173, 557–592 (1972)ADSCrossRefGoogle Scholar
  93. Shu, F.H., Stachnik, R.V., Yost, J.C.: On the density-wave theory of galactic spirals. III. Comparisons with external galaxies. Astrophys. J. 166, 465–481 (1971)ADSCrossRefGoogle Scholar
  94. Siebert, A., Famaey, B., Binney, J., Burnett, B., et al.: The properties of the local spiral arms from RAVE data: two-dimensional density wave approach. MNRAS 425, 2335–2342 (2012)ADSCrossRefGoogle Scholar
  95. Silva, M.D.V., Napiwotzki, R.: High Galactic latitude runaway stars as tracers of the spiral arms. MNRAS 431, 502–510 (2013)ADSCrossRefGoogle Scholar
  96. Steiman-Cameron, T.Y., Durisen, R.H., Boley, A.C., Michael, S., McConnell, C.R.: Convergence studies of mass transport in disks with gravitational instabilities. II. The radiative cooling case. Astrophys. J. 768, 192–206 (2013)ADSCrossRefGoogle Scholar
  97. Stepanishchev, A.S., Bobylev, V.V.: Corrections for the Lutz–Kelker bias for Galactic masers. Astron. Lett. 39, 185–191 (2013)ADSCrossRefGoogle Scholar
  98. Sun, Y., Xu, Y., Yang, J., Li, F.-C., Du, X.-Y., Zhang, S.-B., et al.: A possible extension of the Scutum-Centaurus arm into the outer second quadrant. Astrophys. J. 798, L27–L32 (2015)ADSCrossRefGoogle Scholar
  99. Toomre, A.: Group velocity of spiral waves in galactic disks. Astrophys. J. 158, 899–913 (1969)ADSCrossRefGoogle Scholar
  100. Urquhart, J.S., Figura, C.C., Moore, T.J.T., Hoare, M.G., Lumsden, S.L., Mottram, J.C., et al.: The RMS survey: galactic distribution of massive star formation. MNRAS 437, 1791–1807 (2014)ADSCrossRefGoogle Scholar
  101. Vallée, J.P.: New velocimetry and revised cartography of the spiral arms in the Milky Way: a consistent symbiosis. Astron. J. 135, 1301 (2008)ADSCrossRefGoogle Scholar
  102. Vallée, J.P.: On a persistent large discrepancy in some parameters of the spiral arms in the Milky Way: a statistical and modelling analysis. MNRAS 442, 2993–2998 (2014a)ADSCrossRefGoogle Scholar
  103. Vallée, J.P.: The spiral arms of the Milky Way: the relative location of each different arm tracer within a typical spiral arm width. Astron. J 148, 5–14 (2014b)ADSCrossRefGoogle Scholar
  104. Widrow, L.M., Gardner, S., Yanny, B., Dodelson, S., Chen, H.-Y.: Galactoseismology: discovery of vertical waves in the Galactic disk. Astrophys. J. Lett. 750, L41–L46 (2012)ADSCrossRefGoogle Scholar
  105. Williams, M.E.K., Steinmetz, M., Binney, J., Siebert, A., et al.: The wobbly Galaxy: kinematics north and south with RAVE red-clump giants. MNRAS 436, 101–121 (2013)ADSCrossRefGoogle Scholar
  106. Xu, Y., Li, J.J., Reid, M.J., Menten, K.M., et al.: On the nature of the local spiral arm of the Milky Way. Astrophys. J. 769, 15–34 (2013)ADSCrossRefGoogle Scholar
  107. Yanny, B., Gardner, S.: The stellar number density distribution in the local solar neighborhood is North-South asymmetric. Astrophys. J. 777, 91–106 (2013)ADSCrossRefGoogle Scholar
  108. Yuan, C.: Application of the densiity-wave theory to the spiral structure of the Milky Way system. I. Systematic motion of neutral hydrogen. Astrophys. J. 158, 871–888 (1969a)ADSCrossRefGoogle Scholar
  109. Yuan, C.: Application of the density-wave theory to the spiral structure of the Milky way system. II. Migration of stars. Astrophys. J. 158, 889–898 (1969b)ADSCrossRefGoogle Scholar
  110. Zaritsky, D., Rix, H.-W.: Lopsided spiral galaxies and a limit on the galaxy accretion rate. Astrophys. J. 477, 118–127 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhysicsBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.National Astronomical ObservatoriesChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of PhysicsNational Tsing-Hua UniversityHsin-ChuTaiwan

Personalised recommendations