Skip to main content
Log in

Existence of symmetric central configurations

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Central configurations have been of great interest over many years, with the earliest examples due to Euler and Lagrange. There are numerous results in the literature demonstrating the existence of central configurations with specific symmetry properties, using slightly different techniques in each. The aim here is to describe a uniform approach by adapting to the symmetric case the well-known variational argument showing the existence of central configurations. The principal conclusion is that there is a central configuration for every possible symmetry type, and for any symmetric choice of masses. Finally the same argument is applied to the class of balanced configurations introduced by Albouy and Chenciner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albouy, A., Chenciner, A.: Le problème des \(n\) corps et les distances mutuelles. Invent. Math. 131, 151–184 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Burnside, W.: Theory of Groups of a Finite Order. Cambridge University Press, Cambridge (1897)

    Google Scholar 

  • Cedó, F., Llibre, J.: Symmetric central configurations of the spatial \(n\)-body problem. J. Geom. Phys. 6, 367–394 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chenciner, A.: The Lagrange reduction of the \(N\)-body problem, a survey. Acta Math. Vietnam 38, 165–186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Corbera, M., Llibre, J.: On the existence of central configurations of \(p\) nested regular polyhedra. Celest. Mech. Dyn. Astron. 106, 197–207 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Corbera, M., Llibre, J.: Double-antiprism central configurations of the 3\(n\)-body problem. Qual. Theory Dyn. Syst. 12, 11–24 (2013)

    Article  MathSciNet  Google Scholar 

  • Duistermaat, J.J., Kolk, J.A.C.: Lie Groups. Springer, New York (2000)

    Book  Google Scholar 

  • Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012)

  • Ferrario, D.L., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155, 305–362 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jiang, Y., Zhao, F.: On the existence of central configurations of \(2k+2p+2\ell \)-body problems. Adv. Math. Phys. (2014). doi:10.1155/2014/629467

  • Kerber, A.: Applied Finite Group Actions, 2nd edn. Algorithms and Combinatorics, vol. 19. Springer, Berlin (1999)

  • Lee, T., Santoprete, M.: Central configurations of the five-body problem with equal masses. Celest. Mech. Dyn. Astron. 104, 369–381 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lei, J., Santoprete, M.: Rosette central configurations, degenerate central configurations and bifurcations. Celest. Mech. Dyn. Astron. 94, 271–287 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  • Lim, C., Montaldi, J., Roberts, R.M.: Relative equilibria of point vortices on the sphere. Phys. D 148, 97–135 (2001)

    Article  MathSciNet  Google Scholar 

  • Maderna, E., Venturelli, A.: Globally minimizing parabolic motions in the Newtonian N-body problem. Arch. Ration. Mech. Anal. 194, 283–313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Moeckel, R.: Lectures on Central Configurations. CRM Publications, Birkhauser (to appear). Available from http://www.math.umn.edu/rmoeckel/notes/CentralConfigurations.pdf (2014)

  • Moeckel, R., Simó, C.: Bifurcations of spatial central configurations from planar ones. Siam J. Math. Anal. 26, 978–998 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Montaldi, J., Steckles, K.: Classification of symmetries of planar \(n\)-body choreographies. Forum Math. Sigma 1(e5), 1–55 (2013)

    MathSciNet  Google Scholar 

  • Palais, R.: Principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Serre, J.-P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics, vol. 42. Springer, New York (1977)

  • Stewart, I.: Symmetry methods in collisionless many-body problems. J. Nonlinear Sci. 6, 543–563 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yu, X., Zhang, S.: Twisted angles for central configurations formed by two twisted regular polygons. J. Differ. Equ. 253, 2106–2122 (2012)

    Article  ADS  MATH  Google Scholar 

  • Zhao, F., Chen, J.: Stacked central configurations for Newtonian \(N+2p\)-body problems. J. Math. Anal. Appl. 407, 541–544 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, F., Chen, J.: Central configurations for \((pN+gN)\)-body problems. Celest. Mech. Dyn. Astron. 121, 101–106 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I would like to thank Manuele Santoprete for pointing out some references, and Alain Albouy for making a number of helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Montaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montaldi, J. Existence of symmetric central configurations. Celest Mech Dyn Astr 122, 405–418 (2015). https://doi.org/10.1007/s10569-015-9625-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9625-4

Keywords

Mathematics Subject Classification

Navigation