Skip to main content

Advertisement

Log in

Existence of a class of irregular bodies with a higher convergence rate of Laplace series for the gravitational potential

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The main form of the representation of a gravitational potential \(V\) for a celestial body \(T\) in the outer space is the Laplace series in solid spherical harmonics \((R/r)^{n+1}Y_n(R,\theta ,\lambda )\) with \(R\) being the radius of enveloping \(T\) sphere. It is well known that \(Y_n\) satisfy the inequality

$$\begin{aligned} \langle Y_n\rangle <Cn^{-\sigma }. \end{aligned}$$

The angular brackets mark the maximum of a function’s modulus over a unit sphere. For bodies of irregular structure \(\sigma =5/2\), and this value cannot be increased in general case. At the same time modern models of the geopotential show more rapid rate of decreasing of \(Y_n\). We have found a class \(\mathcal {T}\) of irregular bodies for which \(\sigma =3\). The Earth and (at least a part of) other terrestrial planets, satellites, and asteroids most likely belong to this class. In this paper we describe \(\mathcal {T}\) proving the above inequality for \(\sigma =3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antonov, V.A., Timoshkova, E.I., Kholshevnikov, K.V.: Introduction to the Theory of Newtonian Potential. Nauka, Moscow (1988). (in Russian)

    MATH  Google Scholar 

  • Arnold, K.: Methoden der Satellitengeodäsie. Akad. Verlag, Berlin (1970)

    Google Scholar 

  • Bullen, K.E., Bolt, B.A.: An Introduction to the Theory of Seismology, 4th edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  • Caputo, M.: The Gravity Field of the Earth from Classical and Modern Methods. Academic Press, New York (1967)

    Google Scholar 

  • Chuikova, N.A.: On convergence of series in spherical harmonics representing the outer potential on the physical surface of a planet. Isvestia Vusov, ser. Geodesy 4, 53–54 (1980). (in Russian)

    Google Scholar 

  • Davies, G.F.: Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge University Press, New York (2000)

    Google Scholar 

  • Duboshin, G.N.: Theory of Attraction. Fismatgis, Moscow (1961). (in Russian)

    Google Scholar 

  • Gaposhkin, E.M., Williamson, M.R., Kozai, Y., Mendes, G.: Determination of the geopotential. In: Gaposhkin, E.M. (ed.) Smithsonian Standard Earth III, SAO Spec. Rept. 353 (1973)

  • Kaula, W.M.: Tests and combinations of satellite determinations of the gravity field with gravimetry. J. Geophys. Res. 71(22), 5303–5314 (1966)

    Article  ADS  Google Scholar 

  • Kholchevnikov, C.: Le développement du potentiel dans le cas d’une densité analytique. Celest. Mech. 3, 232–240 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kholchevnikov, C.: Le développement du potentiel dans le cas d’une densité lisse. Celest. Mech. 6, 214–229 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kholshevnikov, C.: On convergence of an asymmetrical body potential expansion in spherical harmonics. Celest. Mech. 16, 45–60 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kholshevnikov, K.V., Shaidulin V.Sh.: On properties of integrals of the Legendre polynomial. Vestn. St. Petersb. Univ.: Math. 47, 28–38 (2014)

  • Kozai, Y.: Revised zonal harmonics in the geopotential. SAO Spec. Rept. 295, 1–17 (1969)

    ADS  Google Scholar 

  • Levallois, J.J.: Bolletino di Geodesia e Science Affini 2, 53 (1973)

  • Marchal, C.: Séminaire du Bureau des Longitudes (1968)

  • Moritz, H.: On the convergence of the spherical harmonic expansion for the geopotential at the Earth’s surface. Bolletino di Geodesia e Science Affini 37, 363–381 (1978)

    ADS  Google Scholar 

  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 117(B4), id. B04406 (2012)

    Article  ADS  Google Scholar 

  • Petrovskaya, M.S.: Representation of the Earth potential in form of the convergent series. Bollettino di Geodesia e Scienze Affini 41 (1982)

  • Poincaré, H.: Figures d’équilibre d’une Masse Fluide. Gauthier-Villars, Paris (1902)

    Google Scholar 

  • Rapp, R.H.: Accuracy of potential coefficients obtained from present and future gravity data. In: Henriksen, S.W., Mancini, A., Chovitz, B.H. (eds.) The Use of Artificial Satellites for Geodesy, pp. 151–160. American Geophysical Union, Washington (1972)

    Chapter  Google Scholar 

  • Smyle, D.E.: Earth Dynamics. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  • Tisserand, F.: Traité de Mécanique céleste, T. 2. Gauthier-Villars, Paris (1891)

    Google Scholar 

  • Vatrt, V.: Truncation error due to geopotential model EGM96. Studia Geoph. et Geod. 43, 223–227 (1999)

    Article  Google Scholar 

  • Yarov-Yarovoi, M.S.: On the force-function of the attraction of a planet and its satellite. In: Problems of Motion of Artificial Celestial Bodies. Acad. Sci. USSR Press, Moscow (1963); (in Russian)

  • Zharkov, V.N.: The Internal Structure of the Earth and Planets. Nauka, Moscow (1983). (in Russian)

    Google Scholar 

Download references

Acknowledgments

We are greatful to the reviewers for valuable remarks. This work is supported by Saint Petersburg State University, research Grant 6.37.341.2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Kholshevnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholshevnikov, K.V., Shaidulin, V.S. Existence of a class of irregular bodies with a higher convergence rate of Laplace series for the gravitational potential. Celest Mech Dyn Astr 122, 391–403 (2015). https://doi.org/10.1007/s10569-015-9622-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9622-7

Keywords

Navigation