Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 120, Issue 4, pp 349–372 | Cite as

Gravity effects of polyhedral bodies with linearly varying density

  • M. G. D’Urso
Original Article

Abstract

We extend a recent approach for computing the gravity effects of polyhedral bodies with uniform density by the case of bodies with linearly varying density and by consistently taking into account the relevant singularities. We show in particular that the potential and the gravity vector can be given an expression in which singularities are ruled out, thus avoiding the introduction of small positive numbers advocated by some authors in order to circumvent undefined operations. We also prove that the entries of the second derivative exhibit a singularity if and only if the observation point is aligned with an edge of a face of the polyhedron. The formulas presented in the paper have been numerically checked with alternative ones derived on the basis of different approaches, already established in the literature, and intensively tested by computing the gravity effects induced by real asteroids with arbitrarily assigned density variations.

Keywords

Gravitational potential Gradient Singularities Polyhedra Eros 

Notes

Acknowledgments

The author wishes to express its deep gratitude to the Associate Editor, prof. Erricos C. Pavlis, and to the anonymous reviewers for careful suggestions and useful comments which resulted in an improved version of the original manuscript.

Supplementary material

10569_2014_9578_MOESM1_ESM.pdf (42 kb)
ESM 1 (PDF 43 kb)

References

  1. Banerjee, B., DasGupta, S.P.: Gravitational attraction of a rectangular parallelepiped. Geophysics 42, 1053–1055 (1977)ADSCrossRefGoogle Scholar
  2. Barnett, C.T.: Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics 41, 1353–1364 (1976)ADSCrossRefGoogle Scholar
  3. Bowen, R.M., Wang, C.C.: Introduction to Vectors and Tensors, Vol 2: Vector and Tensor Analysis. http://hdl.handle.net/1969.1/3609 (2006)
  4. Chai, Y., Hinze, W.J.: Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53, 837845 (1988)CrossRefGoogle Scholar
  5. D’Urso, M.G., Russo, P.: A new algorithm for point-in polygon test. Surv. Rev. 284, 410–422 (2002)CrossRefGoogle Scholar
  6. D’Urso, M.G.: New expressions of the gravitational potential and its derivates for the prism. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds.) VII Hotine-Marussi International Symposium on Mathematical Geodesy. Springer, Berlin, Heidelberg (2012)Google Scholar
  7. D’Urso, M.G.: On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J. Geod. 87, 239–252 (2013a)ADSCrossRefGoogle Scholar
  8. D’Urso M.G.: Some remarks on the computation of the gravitational potential of masses with linearly varying density. In: VIII Hotine-Marussi Symposium, Rome, June 17–21 (2013b)Google Scholar
  9. D’Urso, M.G., Marmo, F.: Vertical stress distribution in isotropic half-spaces due to surface vertical loadings acting over polygonal domains. Zeit. Ang. Math. Mech. (2013c). doi: 10.1002/zamm.201300034
  10. D’Urso, M.G., Marmo, F.: On a generalized Love’s problem. Comput. Geosci. 61, 144–151 (2013d)ADSCrossRefGoogle Scholar
  11. D’Urso, M.G.: Analytical computation of gravity effects for polyhedral bodies. J. Geod. 88, 13–29 (2014)ADSCrossRefGoogle Scholar
  12. Gallardo-Delgado, L.A., Perez-Flores, M.A., Gomez-Trevino, E.: A versatile algorithm for joint inversion of gravity andmagnetic data. Geophysics 68, 949–959 (2003)ADSCrossRefGoogle Scholar
  13. Garcìa-Abdeslem, J.: Gravitational attraction of a rectangular prism with depth dependent density. Geophysics 57, 470–473 (1992)ADSCrossRefGoogle Scholar
  14. Garcìa-Abdeslem, J.: Gravitational attraction of a rectangular prism with density varying with depth following a cubic polynomial. Geophysics 70, J39–J42 (2005)ADSCrossRefGoogle Scholar
  15. Hamayun, P., Prutkin, I., Tenzer, R.: The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J. Geod. 83, 1163–1170 (2009)ADSCrossRefGoogle Scholar
  16. Hansen, R.O.: An analytical expression for the gravity field of a polyhedral body with linearly varying density. Geophysics 64, 75–77 (1999)ADSCrossRefGoogle Scholar
  17. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)Google Scholar
  18. Hoffmann, C.M.: Geometric and solid modeling. http://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html (2002)
  19. Holstein, H., Ketteridge, B.: Gravimetric analysis of uniform polyhedra. Geophysics 61(2), 357–364 (1996)ADSCrossRefGoogle Scholar
  20. Holstein, H.: Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics 68, 157–167 (2003)Google Scholar
  21. Jiancheng, H., Wenbin, S.: Comparative study on two methods for calculating the gravitational potential of a prism. Geo-spat. Inf. Sci. 13, 60–64 (2010)CrossRefGoogle Scholar
  22. Kellogg, O.D.: Foundations of Potential Theory. Springer, Berlin, Heidelberg, New York (1929)CrossRefGoogle Scholar
  23. Koch, K.R.: Die Topographische Schwere- und Lotabweichungs Reduktion für Aufpunkte in Geneigtem Gelände. Allg. Verm. Nachr. 1, 438–441 (1965)Google Scholar
  24. Kwok, Y.-K.: Gravity gradient tensor due to a polyhedron with polygonal facets. Geophys. Prospect. 39, 435–443 (1991)ADSCrossRefGoogle Scholar
  25. MacMillan, W.D.: Theoretical Mechanics, vol. 2: the Theory of the Potential. Mc-Graw-Hill, New York (1930)Google Scholar
  26. Mader, K.: Das Newtonsche Raumpotential Prismatischer körper und Seine Ableitungen bis zur Dritten Ordnung. Österr Zeits Vermes, Sonderheft 11 (1951)Google Scholar
  27. Matlab version 7.10.0: The MathWorks Inc., Natick, Massachusetts (2012)Google Scholar
  28. Nagy, D.: The gravitational attraction of a right rectangular prism. Geophysics 31, 362–371 (1966)ADSCrossRefGoogle Scholar
  29. Nagy, D., Papp, G., Benedek, J.: The gravitational potential and its derivatives for the prism. J. Geod. 74, 553–560 (2000)ADSCrossRefGoogle Scholar
  30. Okabe, M.: Analytical: expressions for gravity anomalies due to homogeneous polyhedral bodies and translation into magnetic anomalies. Geophysics 44, 730–741 (1979)ADSCrossRefGoogle Scholar
  31. Paul, M.K.: The gravity effect of a homogeneous polyhedron for three-dimensional interpretation. Pure Appl. Geophys. 112, 553–561 (1974)ADSCrossRefGoogle Scholar
  32. Petrovic̀, S.: Determination of the potential of homogeneous polyhedral bodies using line integrals. J. Geod. 71, 44–52 (1996)ADSCrossRefMATHGoogle Scholar
  33. Pohanka, V.: Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys. Prospect. 36, 733–751 (1988)ADSCrossRefGoogle Scholar
  34. Pohanka, V.: Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys. Prospect. 46, 391–404 (1998)ADSCrossRefGoogle Scholar
  35. Sessa, S., D’Urso, M.G.: Employment of Bayesian networks for risk assessment of excavation processes in dense urban areas. In: Proceedings of 11th International Conference on ICOSSAR 2013, pp. 30163–30169 (2013)Google Scholar
  36. Smith, D.A.: The gravitational attraction of any polygonally shaped vertical prism with inclined top and bottom faces. J. Geod. 74, 414–420 (2000)ADSCrossRefMATHGoogle Scholar
  37. Strakhov, V.N., Lapina, M.I., Yefimov, A.B.: A solution to forward problems in gravity and magnetism with new analytical expression for the field elements of standard approximating body. Izv Earth Sci. 22, 471–482 (1986)Google Scholar
  38. Tang, K.T.: Mathematical Methods for Engineers and Scientists. Springer, Berlin, Heidelberg, New York (2006)Google Scholar
  39. Tsoulis, D.: A Note on the Gravitational Field of the Right Rectangular Prism. Boll. Geod. Sci. Aff. LIX-1:21–35 (2000)Google Scholar
  40. Tsoulis, D., Petrovic̀, S.: On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics 66, 535–539 (2001)ADSCrossRefGoogle Scholar
  41. Tsoulis, D., Wziontek, H., Petrovic̀, S.: A bilinear approximation of the surface relief in terrain correction computations. J. Geod. 77, 338–344 (2003)ADSCrossRefMATHGoogle Scholar
  42. Tsoulis, D.: Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77, F1–F11 (2012)ADSCrossRefGoogle Scholar
  43. Waldvogel, J.: The Newtonian potential of homogeneous polyhedra. J. Appl. Math. Phys. 30, 388–398 (1979)CrossRefMATHMathSciNetGoogle Scholar
  44. Werner, R.A.: The gravitational potential of a homogeneous polyhedron. Celest. Mech. Dyn. Astron. 59, 253–278 (1994)ADSCrossRefMATHGoogle Scholar
  45. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65, 313–344 (1997)ADSCrossRefMATHGoogle Scholar
  46. Zhou, X.: 3D vector gravity potential and line integrals for the gravity anomaly of a rectangular prism with 3D variable density contrast. Geophysics 74, I43–I53 (2009)CrossRefGoogle Scholar
  47. Zhou, X.: Analytic solution of the gravity anomaly of irregular 2D masses with density contrast varying as a 2D polynomial function. Geophysics 75, I11–I19 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.DICeM—Università di Cassino e del Lazio MeridionaleCassinoItaly

Personalised recommendations