Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 119, Issue 3–4, pp 379–395 | Cite as

Orbits near central configurations for four equal masses

  • Winston L. Sweatman
Original Article

Abstract

This study relates to equal-mass four-body orbits close to a quadruple central configuration. Locally, these orbits can be approximated by a perturbation from the homothetic quadruple collision/expansion orbit. Appropriate expressions are derived and the equal-mass four-body Siegel exponents and associated eigenmodes are presented.

Keywords

Central configurations Relative equilibria Four-body problem Siegel exponents Eigenmodes 

Notes

Acknowledgments

The author is grateful to Douglas Heggie and the University of Edinburgh and Bonnie Steves and Glasgow Caledonian University for their hospitality while progressing this research. He also thanks the organisers and participants of Celmec VI: San Martino al Cimino, Viterbo, Italy for fruitful discussions and the referees of this paper for their constructive comments.

References

  1. Albouy, A.: Symétrie des configurations centrales de quadre corps. C. R. Acad. Sci. Paris 320, 217–220 (1995)MATHMathSciNetGoogle Scholar
  2. Albouy, A.: The symmetric central configurations of four equal masses. Contemp. Math. 198, 131–135 (1996)CrossRefMathSciNetGoogle Scholar
  3. Heggie, D.C., Sweatman, W.L.: Three-body scattering near triple collision or expansion. Mon. Not. R. Astron. Soc. 250, 555–575 (1991)CrossRefMATHMathSciNetADSGoogle Scholar
  4. Lehmann-Filhés, R.: Ueber zwei Fälle des Vielkörperproblems. Astron. Nach. 127, 137–144 (1891)CrossRefADSGoogle Scholar
  5. McGehee, R.: Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)CrossRefMATHMathSciNetADSGoogle Scholar
  6. Mikkola, S.: Encounters of binaries-I. Equal energies. Mon. Not. R. Astron. Soc. 203, 1107–1121 (1983)CrossRefADSGoogle Scholar
  7. Moeckel, R.: Central Configurations. Scholarpedia. http://www.scholarpedia.org/article/Central_configurations (2014)
  8. Moulton, F.R.: The straight line solutions of the problem of N bodies. Ann. Math. 12, 1–17 (1910)CrossRefMATHMathSciNetGoogle Scholar
  9. Siegel, C.L.: Der Dreierstoss. Ann. Math. 42, 127–168 (1940)CrossRefGoogle Scholar
  10. Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Springer, Berlin (1971)CrossRefMATHGoogle Scholar
  11. Simó, C., Lacomba, E.: Analysis of some degenerate quadruple collisions. Celest. Mech. 28, 49–62 (1982)CrossRefMATHADSGoogle Scholar
  12. Sweatman, W.L.: Full ionisation in binary-binary encounters of equal masses with a small positive total energy. Mon. Not. R. Astron. Soc. 377, 459–464 (2007)CrossRefADSGoogle Scholar
  13. Waldvogel, J.: The close triple approach. Celest. Mech. 11, 429–432 (1975)CrossRefMATHMathSciNetADSGoogle Scholar
  14. Waldvogel, J.: The three-body problem near triple collision. Celest. Mech. 14, 287–300 (1976)CrossRefMATHMathSciNetADSGoogle Scholar
  15. Waldvogel, J.: The variational equation of the three-body problem. Celest. Mech. 21, 171–175 (1980)CrossRefMATHMathSciNetADSGoogle Scholar
  16. Waldvogel, J.: The variational equation of the three-body problem. Celest. Mech. 28, 69–82 (1982)CrossRefMATHMathSciNetADSGoogle Scholar
  17. Waldvogel, J.: Central configurations revisited. In: Steves, B.A., Maciejewski, A.J. (eds.) The Restless Universe: Applications of Gravitational N-Body Dynamics to Planetary, Stellar and Galactic Systems, pp. 285–299. Institute of Physics Publishing, Bristol (2001). ISBN 0-7503-0822-2Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Natural and Mathematical SciencesMassey UniversityAucklandNew Zealand

Personalised recommendations