Celestial Mechanics and Dynamical Astronomy

, Volume 118, Issue 4, pp 399–413 | Cite as

The local standard of rest and the well in the velocity distribution

  • Charles Francis
  • Erik Anderson
Original Article


It is now recognised that the traditional method of calculating the LSR fails. We find an improved estimate of the LSR by making use of the larger and more accurate database provided by XHIP and repeating our preferred analysis from Francis and Anderson (New Astron 14:615–629, 2009a). We confirm an unexpected high value of \(U_0\) by calculating the mean for stars with orbits sufficiently inclined to the galactic plane that they do not participate in bulk streaming motions. Our best estimate of the solar motion with respect to the LSR \((U_0, V_0, W_0) = (14.1\, \pm \, 1.1, 14.6\, \pm \, 0.4, 6.9\, \pm \, 0.1)\) km s\(^{-1}\).


Stars: kinematics Stars: statistics Galaxy: kinematics and dynamics  Galaxy: solar neighbourhood 


  1. Anderson, E., Francis, C.: XHIP: an extended Hipparcos compilation. Astron. Lett. 5, 374–392 (2012)Google Scholar
  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)CrossRefGoogle Scholar
  3. Binney, J.J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)MATHGoogle Scholar
  4. Bobylev, V.V.: Estimation of the solar galactocentric distance and galactic rotation velocity from near-solar-circle objects. Astron. Lett. 39(2), 95–103 (2013)ADSCrossRefGoogle Scholar
  5. Bovy, J., Rix, H.-W., Hogg, M.W.: The milky way has no distinct thick disk. Astrophys. J. 751, 131 (2012)ADSCrossRefGoogle Scholar
  6. Clemens, D.P.: Massachusetts-Stony brook galactic plane CO survey—the galactic disk rotation curve. Astrophys. J. 295, 422 (1985)ADSCrossRefGoogle Scholar
  7. Coşkunoğlu, B., Ak, S., Bilir, S., et al.: Local stellar kinematics from RAVE data—I. Local standard of rest. Mon. Notices Roy. Astron. Soc. 412(2), 1237–1245 (2011)ADSGoogle Scholar
  8. Dehnen, W.: The distribution of nearby stars in velocity space inferred from HIPPARCOS data. Astrophys. J. 115, 2384 (1998)ADSGoogle Scholar
  9. Dehnen, W., Binney, J.J.: Local stellar kinematics from HIPPARCOS data. Mon. Notices Roy. Astron. Soc. 298, 387 (1998)ADSCrossRefGoogle Scholar
  10. Delhaye, J.: Solar motion and velocity distribution of common stars. In: Blaauw, A., Schmidt, M. (eds.) Galactic Structure. Stars and Stellar Systems, vol. 5, pp. 61–84. University of Chicago Press, Chicago (1965)Google Scholar
  11. Dommanget, J., Nys, O.: Visual double stars in Hipparcos. Obs. Travaux, 54, 5 [CDS Catalog I/274] (2002)Google Scholar
  12. Eggen, O.J.: Stellar groups. I. The Hyades and Sirius groups. Mon. Notices Roy. Astron. Soc. 118, 65 (1958)ADSGoogle Scholar
  13. Famaey, B., Jorissen, A., Luri, X., Mayor, M., Udry, S., Dejonghe, H., et al.: Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters. A&A 430, 165 (2005)ADSCrossRefGoogle Scholar
  14. Francis, C.: Calibration of RAVE distances to a large sample of Hipparcos stars. Mon. Notices Roy. Astron. Soc. 436, 1343–1361 (2013)ADSCrossRefGoogle Scholar
  15. Francis, C., Anderson, E.: Calculation of the local standard of rest from 20 574 local stars in the new Hipparcos reduction with known radial velocities. New Astron. 14, 615–629 (2009a, FA09a)Google Scholar
  16. Francis, C., Anderson, E.: Galactic spiral structure. Proc. R. Soc. A. 465, 3401–3423 18 (2009b, FA09b)Google Scholar
  17. Francis, C., Anderson, E.: Evidence of a bisymmetric spiral in the milky way. MNRAS. 422, 2, 1283–1293 (2012a, FA12)Google Scholar
  18. Francis, C., Anderson, E.: XHIP-II: clusters and associations. Astron. Lett. 38(11), 763–775 (2012b)CrossRefGoogle Scholar
  19. Francis, C., Anderson, E.: Two estimates of the distance to the galactic centre. [arXiv:1309.2629 astro-ph.GA] (2013)Google Scholar
  20. Gillessen, S., Eisenhauer, F., Fritz, T.K., Bartko, H., Dodds-Eden, K., Pfuhl, O., Ott, T., Genzel, R.: The orbit of the star S2 around Sgr A* from Very Large Telescope and Keck data. Astrophys. J. Lett. 707, L114–L117 (2009)Google Scholar
  21. Gilmore, G., Reid, N.: New light on faint stars. III—galactic structure towards the south pole and the galactic thick disc. Mon. Notices Roy. Astron. Soc. 202, 1025 (1983)ADSGoogle Scholar
  22. Girardi, L., Salaris, M.: Population effects on the red giant clump absolute magnitude, and distance determinations to nearby galaxies. Mon. Notices Roy. Astron. Soc. 323, 109 (2001)ADSCrossRefGoogle Scholar
  23. Goldstein, H.: Classical Mechanics, 2nd ed., pp. 102–105, 421–422. Addison Wesley, Boston (1980)Google Scholar
  24. Gontcharov, G.A.: AstL., 32, 759–771, Pulkovo compilation of radial velocities for 35 495 Hipparcos stars in a common system. [CDS Catalog: III/252] (2006)Google Scholar
  25. Gontcharov, G.A.: Spatial distribution and kinematics of OB stars. Astron. Lett. 38(11), 694–706 (2012a)ADSCrossRefGoogle Scholar
  26. Gontcharov, G.A.: Dependence of kinematics on the age of stars in the solar neighborhood. Astron. Lett. 38(12), 771–782 (2012b)ADSCrossRefGoogle Scholar
  27. Holmberg, J., Nordstrm, B., Andersen, J.: The Geneva-Copenhagen survey of the solar neighbourhood II. New uvby calibrations and rediscussion of stellar ages, the G dwarf problem, age-metallicity diagram, and heating mechanisms of the disk. A&A 475, 519–537 (2007)ADSCrossRefGoogle Scholar
  28. Klement, R.J., Bailer-Jones, C.A.L., Fuchs, B., Rix, H.-W., Smith, K.W.: Classification of field dwarfs and giants in RAVE and its use in stellar stream detection. Astrophys. J. 726(2), 103 (2011)ADSCrossRefGoogle Scholar
  29. Jenkins, A.: Heating of galactic discs with realistic vertical potentials. Mon. Notices Roy. Astron. Soc. 257, 620 (1992)ADSGoogle Scholar
  30. Lépine, J.R.D., Acharova, I.A., Mishurov, Y.N.: Corotation, stellar wandering, and fine structure of the galactic abundance pattern. Astrophys. J. 589, 210 (2003)ADSCrossRefGoogle Scholar
  31. Mason, B.D., Wycoff, G.L., Hartkopf, W.I., Douglass, G.G., Worley, C.E.: The 2001 US naval observatory double star CD-ROM. I. The Washington double star catalog. AJ., 122, 3466. [CDS Catalog: B/wds] (2001)Google Scholar
  32. Mihalas, D., Binney, J.: Galactic Astronomy, 2nd edn. W H Freeman Co, New York (1981)Google Scholar
  33. Parenago, P.P.: Uber die Massen von Bedeckungsveranderlichen mit bekannter Radialgeschwindigkeit nur des Hauptsterns. Astronomicheskii Zhurnal 27, 150 (1950)Google Scholar
  34. Reid, M.J., Brunthaler, A.: The proper motion of sagittarius A*. II. The mass of sagittarius A*. Astrophys. J. 616, 872–884 (2004)ADSCrossRefGoogle Scholar
  35. Robin, A.C., Reylé, C., Derrire, S., Picaud, S.: A synthetic view on structure and evolution of the milky way. A&A 409, 523 (2003)ADSCrossRefGoogle Scholar
  36. Sellwood, J.A., Binney, J.J.: Radial mixing in galactic discs. Mon. Notices Roy. Astron. Soc. 336, 785 (2002)ADSCrossRefGoogle Scholar
  37. Schönrich, R., Binney, J., Dehnen, W.: Local kinematics and the local standard of rest. Mon. Notices Roy. Astron. Soc. 403, 1829–1833 (2010)ADSCrossRefGoogle Scholar
  38. Schönrich, R.: Galactic rotation and solar motion from stellar kinematics. Mon. Notices Roy. Astron. Soc. 427, 274–287 (2012)ADSCrossRefGoogle Scholar
  39. Sofue, Y., Nagayama, T., Matsui, M., Nakagawa, A.: Near-Solar-Circle Method for Determining the Galactic Constants. Publ. Astron. Soc. Jpn. 63, 867 (2011)ADSCrossRefGoogle Scholar
  40. Strömberg, G.B.: The asymmetry in stellar motions and the existence of a velocity-restriction in space. Astrophys. J. 59, 228–252 (1924)ADSCrossRefGoogle Scholar
  41. Strömberg, G.B.: The asymmetry in stellar motions as determined from radial velocities. Astrophys. J. 61, 363–388 (1925)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Jesus CollegeCambridgeEngland
  2. 2.AshlandUSA

Personalised recommendations