Celestial Mechanics and Dynamical Astronomy

, Volume 117, Issue 1, pp 59–74 | Cite as

Tidal evolution of close-in exoplanets in co-orbital configurations

  • Adrián Rodríguez
  • Cristian A. Giuppone
  • Tatiana A. Michtchenko
Original Article


In this paper, we study the behavior of a pair of co-orbital planets, both orbiting a central star on the same plane and undergoing tidal interactions. Our goal is to investigate final orbital configurations of the planets, initially involved in the 1/1 mean-motion resonance (MMR), after long-lasting tidal evolution. The study is done in the form of purely numerical simulations of the exact equations of motions accounting for gravitational and tidal forces. The results obtained show that, at least for equal mass planets, the combined effects of the resonant and tidal interactions provoke the orbital instability of the system, often resulting in collision between the planets. We first discuss the case of two hot-super-Earth planets, whose orbital dynamics can be easily understood in the frame of our semi-analytical model of the 1/1 MMR. Systems consisting of two hot-Saturn planets are also briefly discussed.


Hot Saturns Hot super Earths Two-planet systems Planetary systems disruption Tides  Exo-Trojans 



The authors thank M. Efroimsky for comments and suggestions. A.R and T.A.M acknowledge the support of this project by FAPESP (2009/16900-5) and CNPq (Brazil). C.A.G acknowledges the support by the Argentinian Research Council, CONICET. This work has made use of the computing facilities of the Laboratory of Astroinformatics (IAG/USP, NAT/Unicsul), whose purchase was made possible by the Brazilian agency FAPESP (Grant 2009/54006-4) and the INCT-A. Some of the computations were performed on the Blafis cluster at the Aveiro University. We also acknowledge the two anonymous reviewers for their valuable comments and suggestions.


  1. Batygin, K., Morbidelli, A.: Dissipative divergence of resonant orbits. Astron. J. 145, 1–10 (2013)ADSCrossRefGoogle Scholar
  2. Beutler, G.: Methods of Celestial Mechanics, vol. 1. Springer, Berlin (2005)Google Scholar
  3. Beaugé, C., Sándor, Z., Érdi, B., Suli, Á.: Co-orbital terrestrial planets in exoplanetary systems: a formation scenario. Astron. Astrophys. 463, 359–367 (2007)ADSCrossRefGoogle Scholar
  4. Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Multi-planet extrasolar systems detection and dynamics. Res. Astron. Astrophys. 12, 1044–1080 (2012)ADSCrossRefGoogle Scholar
  5. Callegari, Jr., N., Rodríguez, A.: Dynamics of rotation of super-Earths. Celest. Mech. Dyn. Astron. 116 (2013) doi: 10.1007/s10569-013-9496-5
  6. Chiang, E.I., Lithwick, Y.: Neptune trojans as a test bed for planet formation. Astron. Astrophys. 628, 520–532 (2005)ADSGoogle Scholar
  7. Correia, A.C.M., Boué, G., Laskar, J.: Pumping the eccentricity of exoplanets by tidal effect. Astrophys. J. Lett. 744, L23 (2012)ADSCrossRefGoogle Scholar
  8. Correia, A.C.M., Rodríguez, A.: On the equilibrium figure of close-in planets and satellites. Astrophys. J. 767, 128 (2013)ADSCrossRefGoogle Scholar
  9. Cresswell, P., Nelson, R.P.: On the evolution of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 450, 833–853 (2006)ADSCrossRefGoogle Scholar
  10. Darwin, G.H.: On the secular change in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. 171, 713–891 (repr. Scientific Papers, Cambridge, Vol. II, 1908) (1880)Google Scholar
  11. Delisle, J.-B., Laskar, J., Correia, A.C.M., Boué, G.: Dissipation in planar resonant planetary systems. Astron. Astrophys. 546, A71 (2012)ADSCrossRefGoogle Scholar
  12. Dobbs-Dixon, I., Lin, D.N.C., Mardling, R.A.: Spin-orbit evolution of short-period Planets. Astrophys. J. 610, 464–476 (2004)ADSCrossRefGoogle Scholar
  13. Efroimsky, M., Williams, J.G.: Tidal torques: a critical review of some techniques. Celest. Mech. Dyn. Astron. 104, 257–289 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  14. Ferraz-Mello, S., Rodríguez, A., Hussmann, H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest. Mech. Dyn. Astron. 101, 171–201 (2008). Erratum: 104, 319–320 (2009)Google Scholar
  15. Ferraz-Mello, S.: Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach. Celest. Mech. Dyn. Astron. 116, 109–140 (2013)ADSCrossRefGoogle Scholar
  16. Giuppone, C.A., Beaugé, C., Michtchenko, T.A., Ferraz-Mello, S.: Dynamics of two planets in co-orbital motion. Mon. Not. R. Astron. Soc. 407, 390–398 (2010)ADSCrossRefGoogle Scholar
  17. Giuppone, C.A., Benítez-Llambay, P., Beaugé, C.: Origin and detectability of co-orbital planets from radial velocity data. Mon. Not. R. Astron. Soc. 421, 356–368 (2012)ADSGoogle Scholar
  18. Hadjidemetriou, J.D., Voyatzis, G.: The 1/1 resonance in extrasolar systems. Celest. Mech. Dyn. Astron. 111, 179–199 (2011)Google Scholar
  19. Hadjidemetriou, J.D., Psychoyos, D., Voyatzis, G.: The 1/1 resonance in extrasolar planetary systems. Celest. Mech. Dyn. Astron. 104(1–2), 23–38 (2009)Google Scholar
  20. Hut, P.: Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)ADSMATHGoogle Scholar
  21. Kortenkamp, S.J.: An efficient, low-velocity, resonant mechanism for capture of satellites by a protoplanet. Icarus 175, 409–418 (2005)ADSCrossRefGoogle Scholar
  22. Lainey, V., Arlot, J.-E., Karatekin, O., Van Hoolst, T.: Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009)ADSCrossRefGoogle Scholar
  23. Laughlin, G., Chambers, J.E.: Extrasolar trojans: the viability and detectability of planets in the 1:1 resonance. Astron. J. 124, 592–600 (2002)ADSCrossRefGoogle Scholar
  24. Lithwick, Y., Wu, Y.: Resonant repulsion of Kepler planet pairs. Astrophys. J. Lett. 756, L11 (2012)ADSCrossRefGoogle Scholar
  25. Meyer, J., Wisdom, J.: Tidal heating in Enceladus. Icarus 188, 535–539 (2007)ADSCrossRefGoogle Scholar
  26. Michtchenko, T.A., Beaugé, C., Ferraz-Mello, S.: Stationary orbits in resonant extrasolar planetary systems. Celest. Mech. Dyn. Astron. 94, 411–432 (2006)ADSMATHCrossRefGoogle Scholar
  27. Michtchenko, T.A., Beaugé, C., Ferraz-Mello, S.: Dynamic portrait of the planetary 2/1 mean-motion resonance—I. Systems with a more massive outer planet. Mon. Not. R. Astron. Soc. 387, 747–758 (2008a)ADSCrossRefGoogle Scholar
  28. Michtchenko, T.A., Beaugé, C., Ferraz-Mello, S.: Dynamic portrait of the planetary 2/1 mean-motion resonance—II. Systems with a more massive inner planet. Mon. Not. R. Astron. Soc. 391, 215–227 (2008b)ADSCrossRefGoogle Scholar
  29. Michtchenko, T.A., Rodríguez, A.: Modelling the secular evolution of migrating planet pairs. Mon. Not. R. Astron. Soc. 415, 2275–2292 (2011)ADSCrossRefGoogle Scholar
  30. Mignard, F.: The evolution of the lunar orbit revisited. I. Moon Planets 20, 301–315 (1979)ADSMATHCrossRefGoogle Scholar
  31. Morbidelli, A., Crida, A., Masset, F., Nelson, R.P.: Building giant-planet cores at a planet trap. Astron. Astrophys. 478, 929–937 (2008)ADSCrossRefGoogle Scholar
  32. Papaloizou, J.C.B.: Tidal interactions in multi-planet systems. Celest. Mech. Dyn. Astron. 111, 83–103 (2011)MathSciNetADSCrossRefGoogle Scholar
  33. Pauwels, T.: Cross-tidal effects and orbit-orbit resonances. Chaos Reson. Collect. Dyn. Phenom. Solar Syst. 152, 215 (1992)ADSGoogle Scholar
  34. Ray, R.D., Eanes, R.J., Chao, B.F.: Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry. Nature 381, 595–597 (1996)ADSCrossRefGoogle Scholar
  35. Robutel, P., Pousse, A.: On the co-orbital motion of two planets in quasi-circular orbits. Celest. Mech. Dyn. Astron. 117 (2013). doi: 10.1007/s10569-013-9487-6
  36. Rodríguez, A., Ferraz-Mello, S.: Tidal decay and circularization of the orbits of short-period planets. EAS Publ. Ser. 42, 411–418 (2010)CrossRefGoogle Scholar
  37. Rodríguez, A., Michtchenko, T.A., Miloni, O.: Angular momentum exchange during secular migration of two-planet systems. Celest. Mech. Dyn. Astron. 111, 161–178 (2011a)ADSCrossRefGoogle Scholar
  38. Rodríguez, A., Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C., Miloni, O.: Tidal decay and orbital circularization in close-in two-planet systems. Mon. Not. R. Astron. Soc. 415, 2349–2358 (2011b)ADSCrossRefGoogle Scholar
  39. Rodríguez, A., Callegari, N., Michtchenko, T.A., Hussmann, H.: Spin-orbit coupling for tidally evolving super-Earths. Mon. Not. R. Astron. Soc. 427, 2239–2250 (2012)ADSCrossRefGoogle Scholar
  40. Taylor, P.A., Margot, J.-L.: Tidal evolution of close binary asteroid systems. Celest. Mech. Dyn. Astron. 108, 315–338 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  41. Zhang, K., Hamilton, D.P.: Orbital resonances in the inner neptunian system: II. Resonant history of Proteus, Larissa, Galatea, and Despina. Icarus 193, 267–282 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Adrián Rodríguez
    • 1
  • Cristian A. Giuppone
    • 2
  • Tatiana A. Michtchenko
    • 1
  1. 1.Instituto de Astronomia, Geofísica e Ciências Atmosféricas, IAG—USPUniversidade de São PauloSão PauloBrazil
  2. 2.Observatorio AstronómicoUniversidad Nacional de Córdoba, IATECórdobaArgentina

Personalised recommendations