Celestial Mechanics and Dynamical Astronomy

, Volume 116, Issue 3, pp 229–240 | Cite as

Dynamics of a small body under the action of a Maxwell ring-type N-body system with a spheroidal central body

  • Demetrios Gn. Fakis
  • Tilemahos J. Kalvouridis
Original Article


This study outlines some aspects of the dynamics of a small body under the action of a Maxwell-type N-body system with a spheroidal central body. The non-sphericity of the central primary is described by means of a corrective term in the Newton’s law of gravitation and is taken into account during the derivation of the equations of motion of the small body, improving in this way, previous treatments. Based on this new consideration we investigate the equilibrium locations of the small body and their parametric dependence, as well as the zero-velocity curves and surfaces for the planar motion, and the evolution of the regions where this motion is permitted when the Jacobian constant varies.


Particle dynamics in N-body ring systems Oblateness   Zero-velocity curves and surfaces Equilibrium positions 


  1. Arribas, M., Elipe, A.: Bifurcations and equilibria in the extended N-body problem. Mech. Res. Commun. 31, 1–8 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. Bang, D., Elmabsout, B.: Restricted N+1-body problem: existence and stability of relative equilibria. Celest. Mech. Dyn. Astron. 89, 305–318 (2004)MathSciNetADSCrossRefMATHGoogle Scholar
  3. Barrabes, E., Cors, J.M., Hall, G.R.: A limit case of the “ring problem”: the planar circular restricted \((1+\text{ N })\) body problem. SIAM J. Appl. Dyn. Syst. 9(2), 634–658 (2010)MathSciNetADSCrossRefMATHGoogle Scholar
  4. Barrio, R., Blesa, F., Serrano, S.: Qualitative analysis of the \((\text{ N }+1)\)-body ring problem. Chaos Solitons Fractals 36, 1067–1088 (2008)MathSciNetADSCrossRefMATHGoogle Scholar
  5. Barrio, R., Blesa, F., Serrano, S.: Periodic, escape and chaotic orbits in the Copenhagen and the \((\text{ n }+1)\)-body ring problems. Commun. Nonlinear Sci. Numer. Simul. 14, 2229–2238 (2009)Google Scholar
  6. Bountis, T., Papadakis, K.E.: The stability of vertical motion in the N-body circular Sitnikov problem. Celest. Mech. Dyn. Astron. 104, 205–225 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  7. Croustalloudi, M., Kalvouridis, T.: Attracting domains in ring-type N-body formations. Planet. Space Sci. 55(1–2), 53–69 (2007)ADSCrossRefGoogle Scholar
  8. Elipe, A., Arribas, M., Kalvouridis, T.J.: Periodic solutions and their parametric evolution in the planar case of the \((\text{ n }+1)\) ring problem with oblateness. J. Guid. Control Dyn. 30(6), 1640–1648 (2007)Google Scholar
  9. Elmabsout, B.: Stability of some degenerate positions of relative equilibrium in the n-body problem. Dyn. Stab. Syst. 9(4), 315–319 (1994)MathSciNetCrossRefGoogle Scholar
  10. Hadjifotinou, K.G., Kalvouridis, T.J.: Numerical investigation of periodic motion in the three-dimensional ring problem of N bodies. Int. J. Bifurcat. Chaos 15(8), 2681–2688 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. Garcia-Azpeitia, C., Ize, J.: Global bifurcation of planar and spatial periodic solutions in the restricted n-body problem. Celest. Mech. Dyn. Astr. 110, 217–237 (2011)MathSciNetADSCrossRefGoogle Scholar
  12. Haranas, I., Ragos, O., Mioc, V.: Yukawa-type potential effects in the anomalistic period of celestial bodies. Astrophys. Space Sci. 332, 107–113 (2011)ADSCrossRefMATHGoogle Scholar
  13. Kalvouridis, T.J.: A planar case of the n+1 body problem: the ‘ring’ problem. Astrophys. Space Sci. 260(3), 309–325 (1999)ADSCrossRefGoogle Scholar
  14. Kalvouridis, T.J.: Particle motions in Maxwell’s ring dynamical systems. Celest. Mech. Dyn. Astron. 102(1–3), 191–206 (2008)MathSciNetADSCrossRefMATHGoogle Scholar
  15. Maneff, G.: La gravitation et le principe de l’action et de la réaction. C.R. Acad. Sci. Paris 178, 2159–2161 (1924)MATHGoogle Scholar
  16. Papadakis, K.E.: Asymptotic orbits in the (N+1)-body ring problem. Astrophys. Space Sci. 323, 261–272 (2009)ADSCrossRefMATHGoogle Scholar
  17. Pinotsis, A.D.: Evolution and stability of the theoretically predicted families of periodic orbits in the N-body ring problem. Astron. Astrophys. 432, 713–729 (2005)ADSCrossRefMATHGoogle Scholar
  18. Salo, H., Yoder, C.F.: The dynamics of co-orbital satellite systems. Astron. Astrophys. 205, 309–327 (1988)ADSGoogle Scholar
  19. Scheeres, D.: On symmetric central configurations with application to satellite motion about rings. PhD Thesis, The University of Michigan (1992)Google Scholar
  20. Vanderbei, R.J., Kolemen, E.: Linear stability of ring systems. Astron. J. 133, 656–664 (2007)ADSCrossRefGoogle Scholar
  21. Vanderbei, R.J.: Linear stability of ring systems around oblate central masses. Adv. Space Res. 42, 1370–1377 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Demetrios Gn. Fakis
    • 1
  • Tilemahos J. Kalvouridis
    • 1
  1. 1.Department of Mechanics, Faculty of Applied SciencesNational Technical University of AthensAthensGreece

Personalised recommendations