Celestial Mechanics and Dynamical Astronomy

, Volume 114, Issue 3, pp 215–227 | Cite as

Elliptical multi-sun-synchronous orbits for Mars exploration

  • Christian Circi
  • Emiliano Ortore
  • Federico Bunkheila
  • Carlo Ulivieri
Original Article


The multi-sun-synchronous orbits allow cycles of observation of the same area in which solar illumination repetitively changes according to the value of the orbit elements and returns to the initial condition after a temporal interval multiple of the repetition of observation. This paper generalizes the concept of multi-sun-synchronous orbits, whose classical sun-synchronous orbits represent particular solutions, taking into consideration the elliptical case. The feasibility of using this typology of orbits, referred to as elliptical periodic multi-sun-synchronous orbits, has been investigated for the exploration of Mars and particular solutions have been selected. Such solutions considerably reduce the manoeuvre of velocity variation at the end of the interplanetary transfer with respect to the case of a target circular orbit around Mars. They are based on the use of quasi-critical inclinations in order to minimize the apsidal line motion and thus reduce orbit maintenance costs. Moreover, in the case of high eccentricities, the argument of pericentre may be set in order to obtain, around the apocentre, a condition of quasi-synchronism with the planet (the footprint of the probe on the surface presents a small shift with respect to a fixed point on the Martian surface). The low altitude of pericentre allows observation of the planet at a higher spatial resolution, while the orbit arc around the apocentre may be used to observe Mars with a wide spatial coverage in quasi-stationary conditions. This latter characteristic is useful for analysing atmospheric and meteorological phenomena and it allows for most of the orbital period a link between a rover on the surface of Mars and a probe orbiting around the planet.


Multi-sun-synchronism Elliptical orbits Mars exploration Periodicity conditions Quasi-synchronous orbits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aorpimai M., Palmer P.L.: Analysis of frozen conditions and optimal frozen orbit insertion. J. Guid. Control Dyn. 26(5), 786–793 (2003)CrossRefGoogle Scholar
  2. Avarellos J.L.: Perturbations on a stationary satellite by the longitude-dependent terms in Mars’ gravitational field. J. Astronaut. Sci. 57(4), 701–715 (2009)Google Scholar
  3. Battin R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, AIAA, New York (1987)MATHGoogle Scholar
  4. Boain R.J.: A-B-Cs of sun-synchronous orbit mission design. Adv. Astronaut. Sci. 119(1), 85–104 (2004)Google Scholar
  5. Bolle A., Circi C.: Modified sun-synchronous orbits by means of Solar sails. Recent Pat. Space Technol. 1(1), 72–79 (2011)CrossRefGoogle Scholar
  6. Cantor B., Malin M., Edgett K.S.: Multiyear Mars Orbiter Camera (MOC) observations of repeated martian weather phenomena during the northern summer season. J. Geophys. Res. 107, 5014–5021 (2002)CrossRefGoogle Scholar
  7. Capderou M., Forget F.: Optimal orbits for Mars atmosphere remote sensing. Planet. Space Sci. 52, 789–798 (2004)ADSCrossRefGoogle Scholar
  8. Circi C.: Lunar base for Mars missions. J. Guid. Control Dyn. 28(2), 372–374 (2005)CrossRefGoogle Scholar
  9. Circi C., Teofilatto P.: Effect of planetary eccentricity on ballistic capture in the Solar System. Celest. Mech. Dyn. Astron. 93, 69–86 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  10. Coffey S.L., Deprit A., Miller B.L.: The critical inclination in artificial satellite theory. Celest. Mech. Dyn. Astron. 39, 365–406 (1986)MathSciNetMATHGoogle Scholar
  11. Coffey S.L., Deprit A., Deprit E.: Frozen orbits for satellites close to an Earth-like planet. Celest. Mech. Dyn. Astron. 59, 37–72 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  12. Draim, J. E., Inciardi, R., Cefola, P., Proulx, R., Carter, D.: Demonstration of the COBRA Teardrop Concept Using Two Smallsats in 8-hr Elliptic Orbits. Presented as paper SSC01-II-3 at the 15th Annual/ USU Conference on Small Satellites, Logan, Utah, (2001)Google Scholar
  13. Goody R., Belton M.J.S.: A discussion of Martian Atmospheric dynamics. Planet. Space Sci. 15(2), 247–256 (1967)ADSCrossRefGoogle Scholar
  14. Hess S.L., Henry R.M., Tillman J.E.: The seasonal variation of atmospheric pressure on Mars as affected by the South Polar cap. J. Geophys. Res. 84(B6), 2923–2927 (1979)ADSCrossRefGoogle Scholar
  15. Jai, B., Wenkert, D., Hammer, B., Carlton, M., Johnston, D., Halbrook, T.: An overview of mars reconnaissance orbiter mission, and operations challenges. AIAA SPACE 2007 Conference and Exposition, Long Beach, CA, AIAA Paper 2007-6090, (2007)Google Scholar
  16. Keating G.M., Bougher S.W., Zurek R.W., Tolson R.H., Cancro G.J., Noll S.N. et al.: The structure of the upper atmosphere of Mars: In-situ accelerometer measurements from Mars global surveyor. Science 279(5357), 1672–1676 (1998)ADSCrossRefGoogle Scholar
  17. Light D.L.: Characteristics or remote sensors for mapping and earth science applications. Photogr. Eng. Remote Sens. 56(12), 1613–1623 (1990)Google Scholar
  18. Liu X., Baoyin H., Ma X.: Five special types of orbits around Mars. J. Guid. Control Dyn. 33(4), 1294–1301 (2010)CrossRefGoogle Scholar
  19. Liu X., Baoyin H., Ma X.: Analytical investigations of quasi-circular frozen orbits in the Martian gravity field. Celest Mech Dyn Astr. 109, 303–320 (2011a)MathSciNetADSCrossRefGoogle Scholar
  20. Liu X., Baoyin H., Ma X.: Extension of the critical inclination. Astrophys. Space Sci. 334, 115–124 (2011b)ADSMATHCrossRefGoogle Scholar
  21. Liu X., Baoyin H., Ma X.: Long-term perturbations due to a disturbing body in elliptic inclined orbit. Astrophys. Space Sci. 339, 295–304 (2012a)ADSCrossRefGoogle Scholar
  22. Liu X., Baoyin H., Ma X.: Periodic orbits around aerostationary points in the Martian gravity field. Res. Astron. Astrophys. 12(5), 551–562 (2012b)ADSCrossRefGoogle Scholar
  23. Lyons D.T., Beerer J.G., Esposito P., Johnston M.D., Willcockson W.T.: Mars global surveyor: Aerobraking mission overview. J. Spacecr. Rockets 36(3), 307–313 (1999)ADSCrossRefGoogle Scholar
  24. Ortore E., Ulivieri C.: A small satellite constellation for continuous coverage of mid-low earth latitudes. J. Astronaut. Sci. 56(2), 185–198 (2008)Google Scholar
  25. Ortore E., Ulivieri C., Bunkheila F.: Satellite constellations in inclined multi-stationary orbits. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 225(9), 1050–1060 (2011)CrossRefGoogle Scholar
  26. Ortore E., Circi C., Bunkheila F., Ulivieri C.: Earth and Mars observation using periodic orbits. Adv. Space Res. 49(1), 185–195 (2012)ADSCrossRefGoogle Scholar
  27. Paige D.A., Wood S.E.: Modelling the martian seasonal CO2 Cycle 2. Interannual variability. Icarus 99(1), 15–27 (1992)ADSCrossRefGoogle Scholar
  28. Tamppari L.K., Zurek R.W., Paige D.A.: Viking-era Diurnal Water–ice clouds. J. Geophys. Res. 108, 1–9 (2003)CrossRefGoogle Scholar
  29. Ulivieri, C., Anselmo, L.: Multi-sun-synchronous orbits for Earth observation. Adv. Astronaut. Sci. 76, Uninvelt Inc., San Diego, pp. 123–133, (1991)Google Scholar
  30. Wytrzyszczak I.: Stationary orbits around the Earth and Mars. Art. Satell. 33(1), 11–23 (1998)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Christian Circi
    • 1
  • Emiliano Ortore
    • 1
  • Federico Bunkheila
    • 1
  • Carlo Ulivieri
    • 1
  1. 1.Department of Astronautical, Electrical and Energetic EngineeringSapienza University of RomeRomeItaly

Personalised recommendations