Skip to main content
Log in

Elliptical multi-sun-synchronous orbits for Mars exploration

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The multi-sun-synchronous orbits allow cycles of observation of the same area in which solar illumination repetitively changes according to the value of the orbit elements and returns to the initial condition after a temporal interval multiple of the repetition of observation. This paper generalizes the concept of multi-sun-synchronous orbits, whose classical sun-synchronous orbits represent particular solutions, taking into consideration the elliptical case. The feasibility of using this typology of orbits, referred to as elliptical periodic multi-sun-synchronous orbits, has been investigated for the exploration of Mars and particular solutions have been selected. Such solutions considerably reduce the manoeuvre of velocity variation at the end of the interplanetary transfer with respect to the case of a target circular orbit around Mars. They are based on the use of quasi-critical inclinations in order to minimize the apsidal line motion and thus reduce orbit maintenance costs. Moreover, in the case of high eccentricities, the argument of pericentre may be set in order to obtain, around the apocentre, a condition of quasi-synchronism with the planet (the footprint of the probe on the surface presents a small shift with respect to a fixed point on the Martian surface). The low altitude of pericentre allows observation of the planet at a higher spatial resolution, while the orbit arc around the apocentre may be used to observe Mars with a wide spatial coverage in quasi-stationary conditions. This latter characteristic is useful for analysing atmospheric and meteorological phenomena and it allows for most of the orbital period a link between a rover on the surface of Mars and a probe orbiting around the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aorpimai M., Palmer P.L.: Analysis of frozen conditions and optimal frozen orbit insertion. J. Guid. Control Dyn. 26(5), 786–793 (2003)

    Article  Google Scholar 

  • Avarellos J.L.: Perturbations on a stationary satellite by the longitude-dependent terms in Mars’ gravitational field. J. Astronaut. Sci. 57(4), 701–715 (2009)

    Google Scholar 

  • Battin R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, AIAA, New York (1987)

    MATH  Google Scholar 

  • Boain R.J.: A-B-Cs of sun-synchronous orbit mission design. Adv. Astronaut. Sci. 119(1), 85–104 (2004)

    Google Scholar 

  • Bolle A., Circi C.: Modified sun-synchronous orbits by means of Solar sails. Recent Pat. Space Technol. 1(1), 72–79 (2011)

    Article  Google Scholar 

  • Cantor B., Malin M., Edgett K.S.: Multiyear Mars Orbiter Camera (MOC) observations of repeated martian weather phenomena during the northern summer season. J. Geophys. Res. 107, 5014–5021 (2002)

    Article  Google Scholar 

  • Capderou M., Forget F.: Optimal orbits for Mars atmosphere remote sensing. Planet. Space Sci. 52, 789–798 (2004)

    Article  ADS  Google Scholar 

  • Circi C.: Lunar base for Mars missions. J. Guid. Control Dyn. 28(2), 372–374 (2005)

    Article  Google Scholar 

  • Circi C., Teofilatto P.: Effect of planetary eccentricity on ballistic capture in the Solar System. Celest. Mech. Dyn. Astron. 93, 69–86 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Coffey S.L., Deprit A., Miller B.L.: The critical inclination in artificial satellite theory. Celest. Mech. Dyn. Astron. 39, 365–406 (1986)

    MathSciNet  MATH  Google Scholar 

  • Coffey S.L., Deprit A., Deprit E.: Frozen orbits for satellites close to an Earth-like planet. Celest. Mech. Dyn. Astron. 59, 37–72 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Draim, J. E., Inciardi, R., Cefola, P., Proulx, R., Carter, D.: Demonstration of the COBRA Teardrop Concept Using Two Smallsats in 8-hr Elliptic Orbits. Presented as paper SSC01-II-3 at the 15th Annual/ USU Conference on Small Satellites, Logan, Utah, (2001)

  • Goody R., Belton M.J.S.: A discussion of Martian Atmospheric dynamics. Planet. Space Sci. 15(2), 247–256 (1967)

    Article  ADS  Google Scholar 

  • Hess S.L., Henry R.M., Tillman J.E.: The seasonal variation of atmospheric pressure on Mars as affected by the South Polar cap. J. Geophys. Res. 84(B6), 2923–2927 (1979)

    Article  ADS  Google Scholar 

  • Jai, B., Wenkert, D., Hammer, B., Carlton, M., Johnston, D., Halbrook, T.: An overview of mars reconnaissance orbiter mission, and operations challenges. AIAA SPACE 2007 Conference and Exposition, Long Beach, CA, AIAA Paper 2007-6090, (2007)

  • Keating G.M., Bougher S.W., Zurek R.W., Tolson R.H., Cancro G.J., Noll S.N. et al.: The structure of the upper atmosphere of Mars: In-situ accelerometer measurements from Mars global surveyor. Science 279(5357), 1672–1676 (1998)

    Article  ADS  Google Scholar 

  • Light D.L.: Characteristics or remote sensors for mapping and earth science applications. Photogr. Eng. Remote Sens. 56(12), 1613–1623 (1990)

    Google Scholar 

  • Liu X., Baoyin H., Ma X.: Five special types of orbits around Mars. J. Guid. Control Dyn. 33(4), 1294–1301 (2010)

    Article  Google Scholar 

  • Liu X., Baoyin H., Ma X.: Analytical investigations of quasi-circular frozen orbits in the Martian gravity field. Celest Mech Dyn Astr. 109, 303–320 (2011a)

    Article  MathSciNet  ADS  Google Scholar 

  • Liu X., Baoyin H., Ma X.: Extension of the critical inclination. Astrophys. Space Sci. 334, 115–124 (2011b)

    Article  ADS  MATH  Google Scholar 

  • Liu X., Baoyin H., Ma X.: Long-term perturbations due to a disturbing body in elliptic inclined orbit. Astrophys. Space Sci. 339, 295–304 (2012a)

    Article  ADS  Google Scholar 

  • Liu X., Baoyin H., Ma X.: Periodic orbits around aerostationary points in the Martian gravity field. Res. Astron. Astrophys. 12(5), 551–562 (2012b)

    Article  ADS  Google Scholar 

  • Lyons D.T., Beerer J.G., Esposito P., Johnston M.D., Willcockson W.T.: Mars global surveyor: Aerobraking mission overview. J. Spacecr. Rockets 36(3), 307–313 (1999)

    Article  ADS  Google Scholar 

  • Ortore E., Ulivieri C.: A small satellite constellation for continuous coverage of mid-low earth latitudes. J. Astronaut. Sci. 56(2), 185–198 (2008)

    Google Scholar 

  • Ortore E., Ulivieri C., Bunkheila F.: Satellite constellations in inclined multi-stationary orbits. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 225(9), 1050–1060 (2011)

    Article  Google Scholar 

  • Ortore E., Circi C., Bunkheila F., Ulivieri C.: Earth and Mars observation using periodic orbits. Adv. Space Res. 49(1), 185–195 (2012)

    Article  ADS  Google Scholar 

  • Paige D.A., Wood S.E.: Modelling the martian seasonal CO2 Cycle 2. Interannual variability. Icarus 99(1), 15–27 (1992)

    Article  ADS  Google Scholar 

  • Tamppari L.K., Zurek R.W., Paige D.A.: Viking-era Diurnal Water–ice clouds. J. Geophys. Res. 108, 1–9 (2003)

    Article  Google Scholar 

  • Ulivieri, C., Anselmo, L.: Multi-sun-synchronous orbits for Earth observation. Adv. Astronaut. Sci. 76, Uninvelt Inc., San Diego, pp. 123–133, (1991)

  • Wytrzyszczak I.: Stationary orbits around the Earth and Mars. Art. Satell. 33(1), 11–23 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Circi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Circi, C., Ortore, E., Bunkheila, F. et al. Elliptical multi-sun-synchronous orbits for Mars exploration. Celest Mech Dyn Astr 114, 215–227 (2012). https://doi.org/10.1007/s10569-012-9432-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9432-0

Keywords

Navigation