Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn

  • Philippe Robutel
  • Nicolas Rambaux
  • Maryame El Moutamid
Original Article


The Cassini spacecraft collects high resolution images of the Saturnian satellites and reveals the surface of these new worlds. Tiscareno et al. succeeded to determine the Epimetheus rotation from the Cassini Imaging Science Subsystem data, initiating studies on the rotation of Epimetheus and its companion Janus (Tiscareno et al., Icarus 204:254–261, 2009; Noyelles, Icarus 207:887–902, 2010; Robutel et al., Icarus 211:758–769, 2011). Especially, Epimetheus is characterized by its horseshoe shape orbit and the presence of the swap has to be introduced explicitly into rotational models. During its journey in the Saturnian system, Cassini spacecraft accumulates the observational data of the other satellites and it will be possible to determine the rotational parameters of several of them. To prepare these future observations, we built rotational models of the coorbital (also called Trojan) satellites Telesto, Calypso, Helene, and Polydeuces, in addition to Janus and Epimetheus. Indeed, Telesto and Calypso orbit around the L 4 and L 5 Lagrange points of Saturn-Tethys while Helene and Polydeuces are coorbital of Dione. The goal of this study is to understand how the departure from the Keplerian motion induced by the perturbations of the coorbital body, influences the rotation of these satellites. To this aim, we introduce explicitly the perturbation in the rotational equations by using the formalism developed by Érdi (Celest Mech 15:367–383, 1977) to represent the coorbital motions, and so we describe the rotational motion of the coorbitals, Janus and Epimetheus included, in compact form.


Rotation Coorbitals Libration Secondary resonance Saturn satellites Hamiltonian formulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold V.I., Kozlov V., Neistadt A.: Mathematical Aspects of Classical and Celestial Mechanics. Encyclopaedia of Mathematical Sciences. Springer, Berlin (2006)Google Scholar
  2. Celletti A., Chierchia L.: Measures of basins of attraction in spin-orbit dynamics. Celest. Mech. Dyn. Astron. 101, 159–170 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  3. Christou A.A., Namouni F., Moreira Morais M.H.: The long term stability of coorbital moons of the satellites of Saturn. I. Conservative case. Icarus 192, 106–116 (2007)ADSCrossRefGoogle Scholar
  4. Érdi B.: An asymptotic solution for the trojan case of the plane elliptic restricted problem of three bodies. Celest. Mech. 15, 367–383 (1977)ADSMATHCrossRefGoogle Scholar
  5. Érdi B.: The three-dimensional motion of trojan asteroids. Celest. Mech. 18, 141–161 (1978)ADSMATHCrossRefGoogle Scholar
  6. Giorgini, J.D., Yeomans, D.K., Chamberlin, A.B., Chodas, P.W., Jacobson, R.A., Keesey, M.S., et al.: JPL’s on-line Solar system data service. In: Bulletin of the American Astronomical Society, volume 28 of Bulletin of the American Astronomical Society, p. 1158 (1996)Google Scholar
  7. Henrard J., Lemaitre A.: A second fundamental model for resonance. Celest. Mech. 30, 197–218 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  8. Jacobson R.A., Spitale J., Porco C.C., Beurle K., Cooper N.J., Evans M.W., Murray C.D.: Revised orbits of Saturn’s small inner satellites. Astron. J. 135, 261–263 (2008)ADSCrossRefGoogle Scholar
  9. Jorba A., Simó C.: On quasiperiodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27(6), 1704–1737 (1996)MathSciNetMATHCrossRefGoogle Scholar
  10. Kevorkian, J.: The planar motion of a Trojan asteroid. In: Giacaglia, G.E.O. (Ed.) Periodic Orbits Stability and Resonances, pp. 286–303. Reidel (1970)Google Scholar
  11. Landau L., Lifchitz E.: Mechanics. Pergamon press, Oxford (1960)MATHGoogle Scholar
  12. Laskar J.: The chaotic motion of the Solar system. A numerical estimate of the size of the chaotic zone. Icarus 88, 266–291 (1990)ADSCrossRefGoogle Scholar
  13. Laskar J.: Introduction to frequency map analysis. In: Simó, C. (ed.) Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI, pp. 134–150. Kluwer, Dordrecht (1999)Google Scholar
  14. Lichtenberg A.J., Lieberman M.A.: Regular and Chaotic Dynamics, Vol 38 of Applied Mathematical Sciences. Springer, Berlin (1992)Google Scholar
  15. Morais M.H.M.: Hamiltonian formulation of the secular theory for Trojan-type motion. Astron. Astrophys. 369, 677–689 (2001)ADSMATHCrossRefGoogle Scholar
  16. Murray C.D., Dermott S.F.: Solar System Dynamics. Cambrige University press, Cambridge (1999)MATHGoogle Scholar
  17. NASA, Jet Propulsion Laboratory, Space Institute: Cassini image N00172886. (2011)
  18. Noyelles B.: Theory of the rotation of Janus and Epimetheus. Icarus 207, 887–902 (2010)ADSCrossRefGoogle Scholar
  19. Peale S.J.: Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37, 533 (1999)ADSCrossRefGoogle Scholar
  20. Porco C.C., Thomas P.C., Weiss J.W., Richardson D.C.: Saturn’s small inner satellites: clues to their origins. Science 318, 1602–1607 (2007)ADSCrossRefGoogle Scholar
  21. Robutel P., Rambaux N., Castillo-Rogez J.: Analytical description of physical librations of Saturnian coorbital satellites Janus and Epimetheus. Icarus 211, 758–769 (2011)ADSCrossRefGoogle Scholar
  22. Salo H., Yoder C.F.: The dynamics of coorbital satellite systems. Astron. Astrophys. 205, 309–327 (1988)ADSGoogle Scholar
  23. Sharma R.K., Rao P.V.S.: Stationary solutions and their characteristic exponents in the restricted three-body problem when the more massive primary is an oblate spheroid. Celest. Mech. 13, 137–149 (1976)ADSMATHCrossRefGoogle Scholar
  24. Thomas P.C.: Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus 208, 395–401 (2010)ADSCrossRefGoogle Scholar
  25. Thomas P.C., Davies M.E., Colvin T.R., Oberst J., Schuster P., Neukum G., Carr M.H., McEwen A., Schubert G., Belton M.J.S.: The shape of Io from Galileo Limb measurements. Icarus 135, 175–180 (1998)ADSCrossRefGoogle Scholar
  26. Thomas P.C., Burns J.A., Helfenstein P., Squyres S., Veverka J., Porco C., Turtle E.P., McEwen A., Denk T., Giese B., Roatsch T., Johnson T.V., Jacobson R.A.: Shapes of the saturnian icy satellites and their significance. Icarus 190, 573–584 (2007)ADSCrossRefGoogle Scholar
  27. Tiscareno M.S., Thomas P.C., Burns J.A.: The rotation of Janus and Epimetheus. Icarus 204, 254–261 (2009)ADSCrossRefGoogle Scholar
  28. Vienne A., Duriez L.: TASS1.6: Ephemerides of the major Saturnian satellites. Astron. Astrophys. 297, 588–605 (1995)ADSGoogle Scholar
  29. Wisdom J.: Rotational dynamics of irregularly shaped natural satellites. Astron. J. 94, 1350–1360 (1987)ADSCrossRefGoogle Scholar
  30. Wisdom J.: Spin-orbit secondary resonance dynamics of enceladus. Astron. J. 128, 484–491 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Philippe Robutel
    • 1
  • Nicolas Rambaux
    • 1
    • 2
  • Maryame El Moutamid
    • 1
    • 3
  1. 1.ASD, IMCCE-CNRS UMR8028, Observatoire de ParisParisFrance
  2. 2.Université Pierre et Marie Curie (UPMC)ParisFrance
  3. 3.LESIA, Observatoire de ParisParisFrance

Personalised recommendations