Onset of secular chaos in planetary systems: period doubling and strange attractors

Original Article


As a result of resonance overlap, planetary systems can exhibit chaotic motion. Planetary chaos has been studied extensively in the Hamiltonian framework, however, the presence of chaotic motion in systems where dissipative effects are important, has not been thoroughly investigated. Here, we study the onset of stochastic motion in presence of dissipation, in the context of classical perturbation theory, and show that planetary systems approach chaos via a period-doubling route as dissipation is gradually reduced. Furthermore, we demonstrate that chaotic strange attractors can exist in mildly damped systems. The results presented here are of interest for understanding the early dynamical evolution of chaotic planetary systems, as they may have transitioned to chaos from a quasi-periodic state, dominated by dissipative interactions with the birth nebula.


Chaotic motions Hamiltonian systems Periodic orbits Dissipative forces Planetary systems Perturbation methods Resonance overlap Secular dynamics Chaotic diffusion 


  1. Albers D.J., Sprott J.C.: Routes to chaos in high-dimensional dynamical systems: a qualitative numerical study. Phys. D Nonlinear Phenom. 223, 194–207 (2006)MathSciNetADSCrossRefMATHGoogle Scholar
  2. Batygin K., Bodenheimer P., Laughlin G.: Determination of the interior structure of transiting planets in multiple-planet systems. Astrophys. J. 704, L49–L53 (2009)ADSCrossRefGoogle Scholar
  3. Batygin K., Laughlin G.: On the dynamical stability of the solar system. Astrophys. J. 683, 1207–1216 (2008)ADSCrossRefGoogle Scholar
  4. Batygin K., Laughlin G., Meschiari S., Rivera E., Vogt S., Butler P.: A quasi-stationary solution to Gliese 436b’s eccentricity. Astrophys. J. 699, 23–30 (2009)ADSCrossRefGoogle Scholar
  5. Batygin K., Laughlin G.: Resolving the sin(I) degeneracy in low-mass multi-planet systems. Astrophys. J. 730, 95 (2011)ADSCrossRefGoogle Scholar
  6. Beauge C., Ferraz-Mello S.: Resonance trapping in the primordial solar nebula—the case of a Stokes drag dissipation. Icarus 103, 301–318 (1993)ADSCrossRefGoogle Scholar
  7. Benettin G., Galgani L., Strelcyn J.-M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14, 2338–2345 (1976)ADSCrossRefGoogle Scholar
  8. Bruhwiler D.L., Cary J.R.: Diffusion of particles in a slowly modulated wave. Phys. D Nonlinear Phenom. 40, 265–282 (1989)MathSciNetADSCrossRefMATHGoogle Scholar
  9. Chirikov B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)MathSciNetADSCrossRefGoogle Scholar
  10. Goldreich, P., Soter, S.: Q in the solar system. Icarus 5, 375–389 (1966)ADSCrossRefGoogle Scholar
  11. Gonczi R., Froeschle C., Froeschle C.: Poynting–Robertson drag and orbital resonance. Icarus 51, 633–654 (1982)ADSCrossRefGoogle Scholar
  12. Henrard J., Henrard M.: Slow crossing of a stochastic layer. Phys. D Nonlinear Phenom. 54, 135–146 (1991)MathSciNetADSCrossRefMATHGoogle Scholar
  13. Henrard J., Lemaitre A.: A second fundamental model for resonance. Celest. Mech. 30, 197–218 (1983)MathSciNetADSCrossRefMATHGoogle Scholar
  14. Henrard J., Morbidelli A.: Slow crossing of a stochastic layer. Phys. D Nonlinear Phenom. 68, 187–200 (1993)MathSciNetADSCrossRefMATHGoogle Scholar
  15. Laskar J.: A numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237 (1989)ADSCrossRefGoogle Scholar
  16. Laskar J.: Large-scale chaos in the solar system. Astron. Astrophys. 287, L9–L12 (1994)ADSGoogle Scholar
  17. Laskar J.: Large scale chaos and marginal stability in the solar system. Celest. Mech. Dyn. Astron. 64, 115–162 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  18. Laskar J., Gastineau M.: Existence of collisional trajectories of mercury, mars and venus with the earth. Nature 459, 817–819 (2009)ADSCrossRefGoogle Scholar
  19. Lee M.H., Peale S.J.: Dynamics and origin of the 2:1 orbital resonances of the GJ 876 planets. Astrophys. J. 567, 596–609 (2002)ADSCrossRefGoogle Scholar
  20. Lithwick, Y., Wu, Y.: Theory of Secular Chaos and Mercury’s Orbit. ArXiv e-prints arXiv:1012.3706 (2010)Google Scholar
  21. Lovis C. et al.: The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. 528, A112 (2011)ADSCrossRefGoogle Scholar
  22. Mardling, R.A.: Long-term tidal evolution of short-period planets with companions. Monthly Notices Roy. Astron. Soc. 382, 1768–1790 (2007)ADSGoogle Scholar
  23. Morbidelli, A.: Modern Celestial Mechanics: Aspects of Solar System Dynamic. Taylor Francis, London, ISBN 0415279399 (2002)Google Scholar
  24. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge (1999)Google Scholar
  25. Murray, N., Holman, M.: The origin of chaos in the outer solar system. Science 283, 1877 (1999)ADSCrossRefGoogle Scholar
  26. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge, pp. c1993 (1993)Google Scholar
  27. Sidlichovsky M.: The existence of a chaotic region due to the overlap of secular resonances nu5 and nu6. Celest. Mech. Dyn. Astron. 49, 177–196 (1990)MathSciNetADSCrossRefMATHGoogle Scholar
  28. Wisdom J.: The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. J. 85, 1122–1133 (1980)ADSCrossRefGoogle Scholar
  29. Wu Y.: Origin of tidal dissipation in jupiter. II. The value of Q. Astrophys. J. 635, 688–710 (2005)ADSCrossRefGoogle Scholar
  30. Wu Y., Goldreich P.: Tidal evolution of the planetary system around HD 83443. Astrophys. J. 564, 1024–1027 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Departement CassiopéeUniversite de Nice-Sophia AntipolisNiceFrance

Personalised recommendations