Skip to main content
Log in

The eleventh motion constant of the two-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The two-body problem is a twelfth-order time-invariant dynamic system, and therefore has eleven mutually-independent time-independent integrals, here referred to as motion constants. Some of these motion constants are related to the ten mutually-independent algebraic integrals of the n-body problem, whereas some are particular to the two-body problem. The problem can be decomposed into mass-center and relative-motion subsystems, each being sixth-order and each having five mutually-independent motion constants. This paper presents solutions for the eleventh motion constant, which relates the behavior of the two subsystems. The complete set of mutually-independent motion constants describes the shape of the state-space trajectories. The use of the eleventh motion constant is demonstrated in computing a solution to a two-point boundary-value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battin R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition, sect. 2.4 & 3.6 and chap. 4. AIAA, Virginia (1999)

    Google Scholar 

  • Bruns H.: Über die integrale des Vielkörper-problems. Acta Mathematica 11, 25–96 (1887)

    Article  MathSciNet  Google Scholar 

  • Gronchi G.F., Dimare L., Milani A.: Orbit determination with the two-body integrals. Celest. Mech. Dyn. Astron. 107, 299–318 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Herrick S.: Universal variables. Astron. J. 70, 309–315 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • Isidori A.: Nonlinear Control Systems, 2 edn. sect. 1.4. Springer, Berlin (1989)

    Google Scholar 

  • Poincaré H.: Sur la méthode de Bruns. Comptes rendus hebdomadaires des séances de l’Académie des sciences 123, 1224–1228 (1896)

    Google Scholar 

  • Poincaré H.: Sur une forme nouvelle des équations de la mécanique. C.R. Acad. Sci. 132, 369–371 (1901)

    MATH  Google Scholar 

  • Prussing J.E., Conway B.A.: Orbital Mechanics, sect. 1.2. Oxford University Press, New York, NY (1993)

    Google Scholar 

  • Roy A.E.: Orbital Motion, 4 edn. sect. 5.3. Taylor & Francis, New York (2005)

    Google Scholar 

  • Schaub H., Junkins J.L.: Analytical Mechanics of Space Systems, pp. 558. AIAA, Virgina (2003)

    Google Scholar 

  • Stumpff K.: Neue Formeln und Hilfstafeln zur Ephemeridenrechnung. Astron. Nachrichten 275, 108–128 (1947)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Szebehely V.: Theory of Orbits, sect. 1.3, 1.8 & 2.1. Academic Press, New York (1967)

    Google Scholar 

  • Vallado D.A.: Fundamentals of Astrodynamics and Applications, 2 edn. sect. 1.4.2. Microcosm Press, El Segundo, California (2001)

    Google Scholar 

  • Whittaker E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4 edn. sect. 37 & 155 and chap. 14. Cambridge University Press, Cambridge, UK (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Sinclair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinclair, A.J., Hurtado, J.E. The eleventh motion constant of the two-body problem. Celest Mech Dyn Astr 110, 189–198 (2011). https://doi.org/10.1007/s10569-011-9350-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9350-6

Keywords

Navigation