Optimal two-impulse rendezvous using constrained multiple-revolution Lambert solutions

Original Article


A solution to the fixed-time minimum-fuel two-impulse rendezvous problem for the general non-coplanar elliptical orbits is provided. The optimal transfer orbit is obtained using the constrained multiple-revolution Lambert solution. Constraints consist of lower bound for perigee altitude and upper bound for apogee altitude. The optimal time-free two-impulse transfer problem between two fixed endpoints implies finding the roots of an eighth order polynomial, which is done using a numerical iterative technique. The set of feasible solutions is determined by using the constraints conditions to solve for the short-path and long-path orbits semimajor axis ranges. Then, by comparing the optimal time-free solution with the feasible solutions, the optimal semimajor axis for the two fixed-endpoints transfer is identified. Based on the proposed solution procedure for the optimal two fixed-endpoints transfer, a contour of the minimum cost for different initial and final coasting parameters is obtained. Finally, a numerical optimization algorithm (e.g., evolutionary algorithm) can be used to solve this global minimization problem. A numerical example is provided to show how to apply the proposed technique.


Lambert’s problem Multiple revolution Two-impulse rendezvous Non-coplanar elliptical orbits Coasting arcs 


  1. Avendaño M., Mortari D.: A closed-form solution to the minimum \({\Delta V_{\rm tot}^2}\) Lambert’s problem. Celest. Mech. Dyn. Astron. 106, 25–37 (2010)ADSCrossRefMATHGoogle Scholar
  2. Battin R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, revised edition. AIAA Education Series, Reston, VA (1999)MATHGoogle Scholar
  3. Clohessy W. H., Wiltshire R. S.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–658 (1960)MATHGoogle Scholar
  4. Davis, J., Avendaño, M., Mortari, D.: A closed-form solution to the minimum \({\Delta V_{\rm tot}^2}\) Lambert’s problem. In: AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, PA, AAS 09-364 (2009)Google Scholar
  5. Hill G.W.: Researches in the lunar theory. Am. J. Math. 1(1), 5–26 (1878)CrossRefGoogle Scholar
  6. Iida, H., Bishop R.H.: Analysis of the targeting error induced by Hills guidance. AIAA-93-3860-CP, 1431–1441 (1993)Google Scholar
  7. Prussing J.E.: Optimal two- and three-impulse fixed-time rendezvous in the vicinity of a circular orbit. AIAA J. 8(7), 1221–1228 (1970)ADSMATHCrossRefGoogle Scholar
  8. Prussing J.E.: Geometrical interpretation of the angles α and β in Lambert’s problem. J. Guid. Control Dyn. 2(5), 442–443 (1979)CrossRefGoogle Scholar
  9. Prussing J.E.: A class of optimal two-impulse rendezvous using multiple-revolution Lambert solutions. J. Astronaut. Sci. 48(2-3), 131–148 (2000)Google Scholar
  10. Shen H., Tsiotras P.: Optimal two-impulse rendezvous using multiple-revolution Lambert solutions. J. Guid. Control Dyn. 26(1), 50–61 (2003)CrossRefGoogle Scholar
  11. Tschauner J., Hempel P.: Rendezvous zu ein min elliptischer bahn umlaufenden ziel. Astronaut. Acta. 11(2), 104–109 (1965)MATHGoogle Scholar
  12. Yamanaka K., Ankersen F.: New state transition matrix for relative motion on an arbitrary elliptical orbit. J. Guid. Control Dyn. 25(1), 60–66 (2002)CrossRefGoogle Scholar
  13. Zhang G., Mortari D., Zhou D.: Constrained multiple-revolution Lambert’s problem. J. Guid. Control Dyn. 33(6), 1779–1786 (2010)CrossRefGoogle Scholar
  14. Zhang G., Zhou D.: A second-order solution to the two-point boundary value problem for rendezvous in eccentric orbits. Celest. Mech. Dyn. Astron. 107, 319–336 (2010)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Control Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations