Celestial Mechanics and Dynamical Astronomy

, Volume 108, Issue 4, pp 405–416 | Cite as

Parametric excitation induced by solar pressure torque on the roll-yaw attitude motion of a gravity-gradient stabilized spacecraft

  • Noboru Takeichi
Original Article


The parametric excitation of a gravity gradient stabilized spacecraft induced by the periodic solar pressure torque is discussed. The solar pressure torque in the linearized equations of motion appears as linear terms with periodic coefficients. The attitude stability is analyzed numerically through the calculation of the Floquet multiplier. The perturbation method is also applied to identify the instability condition analytically. It is made clear that the periodic solar pressure torque can destabilize the coupled roll and yaw attitude motion of the spacecraft. It is also shown that the conditions of parametric resonance are included in the gravity gradient stability condition. Nonlinear simulations are also carried out to verify the effect of the parametric resonance. The numerical simulation using actual parameters shows that the spacecraft inevitably experiences a large amplitude attitude motion due to the periodic solar pressure torque even if the gravity gradient stability condition is satisfied.


Spacecraft stabilization Parametric excitation Parametric resonance Solar pressure torque Gravity gradient torque Roll-yaw attitude motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bainum P.M.: Breakwell memorial lecture: Review of astrodynamics, 1958–2001—a personal perspective. Acta Astronaut. 51, 517–526 (2002)CrossRefADSGoogle Scholar
  2. Beletsky V.V., Starostin E.L.: Planar librations of a gravity-oriented satellite under the influence of solar radiation pressure. Acta Astronaut. 19, 201–213 (1989)MATHCrossRefGoogle Scholar
  3. Falcone, M., Lugert, M., Malik, M., Crisci, M., Rooney, M., Jackson, M., Tretheway, M.: Giove-A in orbit testing results. In: Proceedings of the ION GNSS 2006. Fort Worth, Texas, USA. Sep. 26–29 (2006)Google Scholar
  4. Kramer H.J., Cracknell A.P.: An overview of small satellites in remote sensing. Int’l J. Remote Sens. 29, 4285–4337 (2008)CrossRefADSGoogle Scholar
  5. Modi V.J.: On the semi-passive attitude control and propulsion of space vehicles using solar radiation pressure. Acta Astronaut. 35, 231–246 (1995)CrossRefADSGoogle Scholar
  6. Mori M., Kagawa H., Saito H.: Summary of studies on space solar power systems of Japan Aerospace Exploration Agency. Acta Astronaut. 59, 132–138 (2006)CrossRefADSGoogle Scholar
  7. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations, pp. 258–364. John Wiley, New York (1979)MATHGoogle Scholar
  8. Pande K.C.: Parametric excitation of a high altitude gravity gradient satellite. Celest. Mech. 29, 101–106 (1983)MATHCrossRefADSGoogle Scholar
  9. Parker T.S., Chua L.O.: Practical Numerical Algorithms for Chaotic Systems, pp. 61–66. Springer-Verlag, New York (1989)MATHGoogle Scholar
  10. Parvez S.A.: Solar pressure disturbance on GSTAR and SPACENET satellites. J. Spacecr. Rockets 31, 482–488 (1994)CrossRefADSGoogle Scholar
  11. Sakamoto, Y., Yoshida, K., Takahashi Y.: Development and flight data analysis of the attitude determination and control system of Tohoku University SPRITE-SAT. In: ISTS 2009-f-13. 27th Int’l Symposium on Space Technology and Science. Tsukuba, Ibaraki, Japan, Jul. 10. (2009)Google Scholar
  12. Sasaki S., Tanaka K., Higuchi K., Okuizumi N., Kawasaki S., Shinohara N., Senda K., Ishimura K.: A new concept of solar power satellite: Tethered-SPS. Acta Astronaut. 60, 153–165 (2007)CrossRefADSGoogle Scholar
  13. Scheeres D.J., Mirrahimi S.: Rotational dynamics of a solar system body under solar radiation torques. Celest. Mech. Dyn. Astron. 101, 69–103 (2008)MATHCrossRefMathSciNetADSGoogle Scholar
  14. Tanaka, T., Sato, Y., Kusakawa, Y., Shimizu, K., Tanaka, T., Kim, S.K., Komatsu, M., Yoo, I., Caesy, L., Nakasuka, S.: The operation results of earth image acquisition using extensible flexible optical telescope of “PRISM”. In: ISTS 2009-n-15. 27th Int’l Symposium on Space Technology and Science. Tsukuba, Ibaraki, Japan, Jul. 7 (2009)Google Scholar
  15. Ueno, S.: Attitude error of satellite due to gravity gradient boom. J. Jpn. Soc. Aeronaut. Space Sci. 51, 659–666 (2003, in Japanese)Google Scholar
  16. Wertz J.R.: Spacecraft Attitude Determination and Control, pp. 510–573. Kluwer, Dordrecht (1978)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Aerospace Engineering, Graduate School of EngineeringNagoya UniversityNagoya, AichiJapan

Personalised recommendations