Celestial Mechanics and Dynamical Astronomy

, Volume 108, Issue 4, pp 357–370 | Cite as

Stable and unstable orbits around Mercury

  • Zoltán Makó
  • Ferenc Szenkovits
  • Júlia Salamon
  • Robert Oláh-Gál
Original Article


This paper provides a study of the stable and unstable regions around the smaller primary in the framework of the spatial elliptic restricted three-body problem. The definitions and methods used to determine stable and unstable regions are extended to three dimensions. New results concerning the stable and unstable regions around Mercury are obtained in the Sun–Mercury system.


Weak stability boundary Weak capture Spatial elliptic restricted three-body problem 

Mathematics Subject Classification (2000)

70F07 70F15 37N05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belbruno E.: Capture Dynamics and Chaotic Motions in Celestial Mechanics. Princeton University Press, Princeton (2004)MATHGoogle Scholar
  2. Belbruno E., Topputo F., Gidea M.: Resonance transitions associated to weak capture in the restricted three-body problem. Adv. Space Res. 42, 1330–1351 (2008)CrossRefADSGoogle Scholar
  3. Belbruno E., Miler J.K.: Sun perturbed Eart-to-Moon transfers with Ballistic capture. J. Guid. Control. Dyn. 16, 770–775 (1993)CrossRefADSGoogle Scholar
  4. Érdi B., Forgács-Dajka E., Nagy I., Rajnai R.: A parametric study of stability and resonances around L 4 in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 104, 145–158 (2009)MATHCrossRefADSGoogle Scholar
  5. García F., Gómez G.: A note on weak stability boundaries. Celest. Mech. Dyn. Astron. 97, 87–100 (2007)MATHCrossRefADSGoogle Scholar
  6. Jehn, R., Campagnola, S., García, D., Kemble, S.: Low-thrust approach and gravitational capture at Mercury. In: Proceedings of the 18th International Symposium on Space Flight Dynamics, pp. 487–492 (2004)Google Scholar
  7. Jehn R., Companys V., Corral C., García Yárnoz D., Sánchez C.: Navigaing BepiColombo during the weak-stability capture at Mercury. Adv. Space Res. 42, 1364–1369 (2008)CrossRefADSGoogle Scholar
  8. Nagler J.: Crash test for the restricted three-body problem. Phys. Rev. E 71, 026227 (2005)CrossRefMathSciNetADSGoogle Scholar
  9. Perozzi, E., Ferraz-Mello, S. (eds): Space Manifold Dynamics. Springer, New York (2009)Google Scholar
  10. Romagnoli D., Circi C.: Earth–Moon weak stability boundaries in the restricted three and four body problem. Celest. Mech. Dyn. Astron. 103, 79–103 (2009)MATHCrossRefMathSciNetADSGoogle Scholar
  11. Szebehely V.: Theory of Orbits. Academic Press, New-York (1967)Google Scholar
  12. Szenkovits F., Makó Z., Csillik I., Balint A.: Capture model in the restricted three-body problem. Pure Math. Appl. 13(4), 463–471 (2002)MATHMathSciNetGoogle Scholar
  13. Szenkovits F., Makó Z.: About the Hill stability of extrasolar planets in stellar binary systems. Celest. Mech. Dyn. Astron. 101, 273–287 (2008)CrossRefADSGoogle Scholar
  14. Topputo F., Belbruno E.: Computation of weak stability boundaries: Sun–Jupiter system. Celest. Mech. Dyn. Astron. 105, 3–17 (2009)CrossRefMathSciNetADSGoogle Scholar
  15. Yeomans, D.K.: NASA Jet Propulsion Laboratory: Solar System dynamics. (2007)

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Zoltán Makó
    • 1
  • Ferenc Szenkovits
    • 2
  • Júlia Salamon
    • 1
  • Robert Oláh-Gál
    • 1
  1. 1.Department of Mathematics and InformaticsSapientia UniversityMiercurea CiucRomania
  2. 2.Department of Applied MathematicsBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations