Advertisement

A global regularisation for integrating the Caledonian symmetric four-body problem

  • Anoop Sivasankaran
  • Bonnie A. Steves
  • Winston L. Sweatman
Original Article

Abstract

Several papers in the last decade have studied the Caledonian symmetric four-body problem (CSFBP), a restricted four-body system with a symmetrically reduced phase space. During these studies, difficulties have arisen when the system approaches a close encounter. These are due to collision singularities causing numerical integration algorithms to fail. In this paper, we give the full details of a regularisation approach that now enables us to study these close encounters and collision events. The resulting equations of motion can be efficiently integrated by a high-order integrator. The results from numerical testing of the algorithm verify that the regularisation is advantageous in preserving numerical stability. The effectiveness of the approach is illustrated for a range of CSFBP orbits. Numerical experiments show that the newly developed regularisation algorithm has excellent energy conservation properties.

Keywords

Regularisation Close encounters Restricted four-body problem Caledonian symmetrical four-body problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarseth S.J.: Gravitational N-Body Simulations. Cambridge University Press, London (2003)MATHCrossRefGoogle Scholar
  2. Celletti A.: Singularities, collisions and regularisation theory. In: Benest, D., Froeschlé, C. (eds) Singularities in Gravitational Systems, pp. 25–50. Springer, Berlin (2002)Google Scholar
  3. Everhart E.: An efficient integrator that uses Gauss–Radau spacings. In: Caruci, A., Valsecchi, G.B. (eds) The Dynamics of Comets: Their Origin and Evolution, pp. 185–202. Reidel, Dordrecht (1985)Google Scholar
  4. Gruntz D., Waldvogel J.: Orbits in the planar three-body problem. In: Gander, W., Hrebicek, J. (eds) Solving Problems in Scientific Computing Using Maple and Matlab, pp. 51–72. Springer, New York (1998)Google Scholar
  5. Heggie D.C.: A global regularisation of the gravitational N-body problem. Celest. Mech. Dyn. Astron. 10, 217–241 (1974)MATHGoogle Scholar
  6. Loks A., Sergysels R.: Zero velocity hypersurfaces for the general planar four-body problem. Astron. Astrophys. 149, 462–464 (1985)MATHMathSciNetADSGoogle Scholar
  7. Marchal C., Saari D.G.: Hill regions for the general three-body problem. Celest. Mech. Dyn. Astron. 12, 115 (1975)MATHMathSciNetGoogle Scholar
  8. Roy A.E., Steves B.A.: Some special restricted four-body problems-II: from Caledonian to Copenhagen. Planet. Space Sci. 46, 1475–1486 (1998)CrossRefADSGoogle Scholar
  9. Roy A.E., Steves B.A.: The Caledonian symmetrical double binary four-body problem: surfaces of zero velocity using the energy integral. Celest. Mech. Dyn. Astron. 78, 299–318 (2001)CrossRefMathSciNetADSGoogle Scholar
  10. Sekiguchi M., Tanikawa K.: On the symmetric collinear four-body problem. Publ. Astron. Soc. Jpn. 56, 236–251 (2004)ADSGoogle Scholar
  11. Sergysels R., Loks A.: Restrictions on the motion in the general four-body problem. Astron. Astrophys. 182, 163–166 (1987)MATHADSGoogle Scholar
  12. Sivasankaran, A., Steves, B.A., Sweatman, W.L.: Close encounters in the Caledonian symmetric four-body problem. In: Varvoglis, H., Knez̆ević, Z. (eds.) Proceedings of the International Conference on the Dynamics of Celestial Bodies, Greece, June 2008, pp. 177–180. Aristotle University, Thessaloniki and Astronomical Observatory, Belgrade (2009) Google Scholar
  13. Steves B.A., Roy A.E.: Some special restricted four-body problems-I: modelling the Caledonian problem. Planet. Space Sci. 46, 1465–1474 (1998)CrossRefADSGoogle Scholar
  14. Steves B.A., Roy A.E.: Surfaces of separation in the Caledonian symmetrical double binary four-body problem. In: Steves, B.A., Maciejewski, A.J. (eds) The Restless Universe: Application of Gravitational N-body Dynamics to Planetary, Stellar and Galactic Systems, pp. 301–325. IOP Publishing, Bristol (2001)Google Scholar
  15. Sweatman W.L.: The symmetrical one-dimensional Newtonian four-body problem: a numerical investigation. Celest. Mech. Dyn. Astron. 82, 179–201 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  16. Sweatman W.L.: A family of Schubart-like interplay orbits and their stability in the one-dimensional four-body problem. Celest. Mech. Dyn. Astron. 94, 37–65 (2006)MATHCrossRefMathSciNetADSGoogle Scholar
  17. Széll A., Steves B.A., Érdi B.: The hierarchical stability of quadruple stellar and planetary systems using the CSFBP model. Astron. Astrophys. 427, 1145–1154 (2004a)MATHCrossRefADSGoogle Scholar
  18. Széll A., Érdi B., Sándor Z., Steves B.A.: Chaotic and stable behavior in the Caledonian symmetric four-body problem. MNRAS 347, 380–388 (2004b)CrossRefADSGoogle Scholar
  19. Waldvogel J.: Quaternions for regularizing celestial mechanics: the right way. Celest. Mech. Dyn. Astron. 102, 149–162 (2008)MATHCrossRefMathSciNetADSGoogle Scholar
  20. Zare K.: The effects of integrals on the totality of solutions of dynamical systems. Celest. Mech. Dyn. Astron. 14, 73–83 (1976)MATHMathSciNetGoogle Scholar
  21. Zare K.: Bifurcation points in the planar problem of three bodies. Celest. Mech. Dyn. Astron. 16, 35–38 (1977)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anoop Sivasankaran
    • 1
  • Bonnie A. Steves
    • 1
  • Winston L. Sweatman
    • 2
  1. 1.School of Engineering and Computing, Glasgow Caledonian UniversityGlasgowUK
  2. 2.Institute of Information and Mathematical SciencesMassey University at AlbanyAucklandNew Zealand

Personalised recommendations