Periodic and quasi-periodic motions of a solar sail close to SL 1 in the Earth–Sun system

  • Ariadna Farrés
  • Àngel Jorba
Original Article


Solar sails are a proposed form of spacecraft propulsion using large membrane mirrors to propel a satellite taking advantage of the solar radiation pressure. To model the dynamics of a solar sail we have considered the Earth–Sun Restricted Three Body Problem including the Solar radiation pressure (RTBPS). This model has a 2D surface of equilibrium points parametrised by the two angles that define the sail orientation. In this paper we study the non-linear dynamics close to an equilibrium point, with special interest in the bounded motion. We focus on the region of equilibria close to SL 1, a collinear equilibrium point that lies between the Earth and the Sun when the sail is perpendicular to the Sun–sail direction. For different fixed sail orientations we find families of planar, vertical and Halo-type orbits. We have also computed the centre manifold around different equilibria and used it to describe the quasi-periodic motion around them. We also show how the geometry of the phase space varies with the sail orientation. These kind of studies can be very useful for future mission applications.


Centre manifold Graph transform Invariant tori Low–thrust Artificially generated equilibrium points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bookless, J., McInnes, C.R.: Control of Lagrange point orbits using solar sail propulsion. In: Proceedings of the 56th International Astronautical Congress (2005)Google Scholar
  2. Carr J.: Applications of Centre Manifold Theory. Springer, New York (1981)MATHGoogle Scholar
  3. Crawford J.D.: Introduction to bifurcation theory. Rev. Modern Phys. 64, 991–1037 (1991)CrossRefMathSciNetADSGoogle Scholar
  4. Devaney R.L.: Reversible diffeomorphisms and flows. Trans. Am. Math. Soc. 218, 89–113 (1976)MATHCrossRefMathSciNetGoogle Scholar
  5. Farrés A., Farrés A.: Dynamical system approach for the station keeping of a solar sail. J. Astronaut. Sci. 58, 199–230 (2008a)Google Scholar
  6. Farrés A., Farrés A.: Solar sail surfing along families of equilibrium points. Acta Atronaut. 63, 249–257 (2008b)CrossRefADSGoogle Scholar
  7. Farrés, A., Jorba, À.: On the high order approximation of the centre manifold for ODEs. preprint (2009)Google Scholar
  8. Gulobitski M., Schaeffer D.G., Stewart I.N.: Singularities and Groups in Bifurcation Theory. Springer, New York (1985)Google Scholar
  9. Jorba À.: A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems. Exp. Math. 8, 155–195 (1999)MATHMathSciNetGoogle Scholar
  10. Lamb J.S.W., Roberts J.A.G.: Time-reversal symmetry in dynamical systems: a survey. Phys. D Nonlinear Phenom. 112, 1–39 (1998)CrossRefMathSciNetADSGoogle Scholar
  11. Lisano, M.: Solar sail transfer trajectory design and station keeping control for missions to Sub-L1 equilibrium region. In: Proceedings of the 15th AAS/AIAA Space Flight Mechanics Conference. Colorado (2005)Google Scholar
  12. Macdonald, M., McInnes, C.R.: A near-term road map for solar sailing. In: Proceedings of the 55th International Astronautical Congress, Vancouver (2004)Google Scholar
  13. McInnes, A.: Strategies for Solar Sail Mission Design in the Circular Restricted Three-Body Problem, Master Thesis. Purdue University (2000)Google Scholar
  14. McInnes C.R.: Solar Sailing: Technology, Dynamics and Mission Applications. Springer-Praxis, London (1999)Google Scholar
  15. McInnes C.R., McDonald A.J.C., Simmons J.F.L., MacDonald E.W.: Solar sail parking in restricted three-body system. J. Guid. Control Dyn. 17, 399–406 (1994)MATHCrossRefADSGoogle Scholar
  16. Meyer K.R., Hall G.R.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, New York (1991)Google Scholar
  17. Moser J.K.: On the generalization of a theorem of A. Liapounoff. Comm. Pure Appl. Math. 11, 257–271 (1958)MATHCrossRefMathSciNetGoogle Scholar
  18. Rios-Reyes, L., Scheeres, D.J.: Robust solar sail trajectory control for large pre-launch modelling errors. In: Proceedings of the AIAA Guidance, Navigation and Control Conference (2005)Google Scholar
  19. Sevryuk M.B.: Reversible Systems. Springer, Berlin (1986)MATHGoogle Scholar
  20. Sevryuk M.B.: The finite-dimensional reversible KAM theory. Physica D Nonlinear Phenomena 112, 132–147 (1998)CrossRefMathSciNetADSGoogle Scholar
  21. Sijbrand, J.: Properties of the centre manifold. Trans. Am. Math. Soc. 289, 431–469 (1985)MATHCrossRefMathSciNetGoogle Scholar
  22. Simó, C.: Analytical and numerical approximation of invariant manifolds. In: Froeschlé, C., Benest, D. (eds.) Les méthodes modernes de la Mecánique Céleste, pp. 285–329. Editions Frontières, Gif-sur-Yvette (1990)Google Scholar
  23. Stoer J., Bulirsch B.: Introduction to Numerical Analysis. Springer, New York (2002)MATHGoogle Scholar
  24. Szebehely V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)Google Scholar
  25. Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. In: Dynamics Reported. A Series in Dynamical Systems and their Applications, vol. 2 , John Wiley & Sons Ltd (1989)Google Scholar
  26. Waters T.J., McInnes C.R.: Periodic orbits above the ecliptic plane in the solar sail restricted 3-body problem. J. Guid. Control Dyn. 30, 786–793 (2007)CrossRefGoogle Scholar
  27. Waters, T.J., McInnes, C.R.: Invariant manifolds and orbit control in the solar sail 3-body problem. J. Guid. Control Dyn. 31, 554–562 (2008)CrossRefGoogle Scholar
  28. Yen, C.W.: Solar sail geostorm warning mission design. In: Proceedings of the 14th AAS/AIAA Space Flight Mechanics Conference. Hawaii (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations