Celestial Mechanics and Dynamical Astronomy

, Volume 106, Issue 4, pp 371–390 | Cite as

Relative motion of satellites exploiting the super-integrability of Kepler’s problem

  • K. Uldall Kristiansen
  • P. L. Palmer
  • M. Roberts
Original Article


This paper builds upon the work of Palmer and Imre exploring the relative motion of satellites on neighbouring Keplerian orbits. We make use of a general geometrical setting from Hamiltonian systems theory to obtain analytical solutions of the variational Kepler equations in an Earth centred inertial coordinate frame in terms of the relevant conserved quantities: relative energy, relative angular momentum and the relative eccentricity vector. The paper extends the work on relative satellite motion by providing solutions about any elliptic, parabolic or hyperbolic reference trajectory, including the zero angular momentum case. The geometrical framework assists the design of complex formation flying trajectories. This is demonstrated by the construction of a tetrahedral formation, described through the relevant conserved quantities, for which the satellites are on highly eccentric orbits around the Sun to visit the Kuiper belt.


Relative motion Formation flying Variational equations Constellations Tetrahedral formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Broucke R.A.: Solution of the elliptic rendezvous problem with the time as independent variable. J. Guid. Control Dyn. 26(4), 615–621 (2003)CrossRefGoogle Scholar
  2. Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–658 (674) (1960)Google Scholar
  3. Cushmann R.H., Bates L.M.: Global Aspects of Classical Integrable Systems. Birkhauser Verlag, Basel (1997)Google Scholar
  4. Escoubet, C.P.: Cluster-II: scientific objectives and data dissemination. Technical report, ESA, ESTEC, Noordwijk, The Netherlands (2000)Google Scholar
  5. Fasano G., D’Errico M.: Modelling orbital relative motion to enable formation design from application requirements. Celest. Mech. Dyn. Astron. 105, 113–139 (2009)CrossRefADSGoogle Scholar
  6. Folta, D., Bristow, J., Hawkins, A., Dell, G.: Enhanced formation flying validation report (gsfc algorithm). Technical report, NASA/GSFC, Maryland, USA (2002)Google Scholar
  7. Gómez G., Marcote M.: High-order analytical solutions of Hill’s equations. Celest. Mech. Dyn. Astron. 94, 197–211 (2006)MATHCrossRefADSGoogle Scholar
  8. Guinn, J.R.: Enhanced formation flying validation report (JPL Algorithm). Technical report, NASA/GSFC, Maryland, USA (2002)Google Scholar
  9. Halsall M., Palmer P.L.: Modelling natural formations of LEO satellites. Celest. Mech. Dyn. Astron. 99, 105–127 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  10. Hill, G.W.: Researches in the lunar theory. Am. J. Math. 1, 5–26 (129–147, 245–260) (1878)Google Scholar
  11. Imre E., Palmer P.L.: High precission symplectic numerical relative orbit propagation. J. Guid. Control Dyn. 4, 965–973 (2007)Google Scholar
  12. Karlgaard C.D., Lutze F.H.: Second-order relative motion equations. J. Guid. Control Dyn. 26(1), 41–49 (2003)CrossRefGoogle Scholar
  13. Lawden D.F.: Fundamentals of space navigation. J. Britsh Interplanet. Soc. 13, 87–101 (1954)Google Scholar
  14. Marsden J.E., Ratiu T., Raugel G.: Symplectic connections and the linearisation of Hamiltonian systems. Proc. Royal Soc. Edinb. 117A, 329–380 (1991)MathSciNetGoogle Scholar
  15. Melton R.G.: Time-explicit representation of relative motion between elliptical orbits. J. Guid. Control Dyn. 23(4), 604–610 (2000)CrossRefGoogle Scholar
  16. Palmer P.L., Imre E.: Relative motion of satellites on neighbouring Keplerian orbits. J. Guid. Control Dyn. 30(2), 521–528 (2007)CrossRefGoogle Scholar
  17. Schaub H., Alfriend K.T.: J 2 invariant relative orbits for spacecraft formations. Celest. Mech. Dyn. Astron. 79, 77–95 (2001)MATHCrossRefADSGoogle Scholar
  18. Schweighart S.A., Sedwick R.J.: High-fidelity linearized J 2 model for satellite formation flight. J. Guid. Control Dyn. 25(6), 1073–1080 (2002)CrossRefGoogle Scholar
  19. Sengupta P., Vadali S.R., Alfriend K.T.: Second-order state transition for relative motion near perturbed, elliptic orbits. Celest. Mech. Dyn. Astron. 97, 101–129 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  20. Tapley B.D., Bettadpur S., Watkins M., Reigber C.: The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31(9), L09607 (2004)CrossRefGoogle Scholar
  21. Tempesta, P., Winternitz, P., Harnad, J., Miller, Jr. W., Pogosyan, G., Rodriguez, M.: CRM, Proceedings & Lecture Notes, volume 34. Centre de Recherches Mathématiques, Université de Montréal (2004)Google Scholar
  22. Tschauner J., Hempel P.: Optimale beschleunigeungsprogramme fur das rendezvous-manover. Acta Astronautica. 10, 296–307 (1964)Google Scholar
  23. Vaddi S.S., Vadali S.R., Alfriend K.T.: Formation flying: accommodating nonlinearity and eccentricity perturbations. J. Guid. Control Dyn. 26(2), 214–223 (2003)CrossRefGoogle Scholar
  24. Wiesel W.E., Pohlen D.J.: Canonical Floquet theory. Celest. Mech. Dyn. Astron. 58(1), 81–96 (1994)CrossRefMathSciNetADSGoogle Scholar
  25. Wiesel W.E.: Relative satellite motion about an oblate planet. J. Guid. Control Dyn. 25(4), 776–785 (2002)CrossRefMathSciNetGoogle Scholar
  26. Xiang, W., Jørgensen, J.L.: Formation flying: a subject being fast unfolding in space. In: 5th IAA Symposium on Small Satellites for Earth Observation, Berlin, IAA-B5-0309P (2005).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • K. Uldall Kristiansen
    • 1
    • 2
  • P. L. Palmer
    • 1
  • M. Roberts
    • 2
  1. 1.Surrey Space CentreUniversity of SurreyGuildfordUK
  2. 2.Department of MathematicsUniversity of SurreyGuildfordUK

Personalised recommendations