A parametric study of stability and resonances around L 4 in the elliptic restricted three-body problem

  • Bálint Érdi
  • Emese Forgács-Dajka
  • Imre Nagy
  • Renáta Rajnai
Original Article


The size of the stable region around the Lagrangian point L 4 in the elliptic restricted three-body problem is determined by numerical integration as a function of the mass parameter and eccentricity of the primaries. The size distribution of the stable regions in the mass parameter-eccentricity plane shows minima at certain places that are identified with resonances between the librational frequencies of motions around L 4. These are computed from an approximate analytical equation of Rabe relating the frequency, mass parameter and eccentricity. Solutions of this equation are determined numerically and the global behaviour of the frequencies depending on the mass parameter and eccentricity is shown and discussed. The minimum sizes of the stable regions around L 4 change along the resonances and the relative strength of the resonances is analysed. Applications to possible Trojan exoplanets are indicated. Escape from L 4 is also investigated.


Elliptic restricted three-body problem Lagrangian point L4 Stability Resonances Trojan planets Rabe’s frequency equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett A.: Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4, 177–187 (1965)CrossRefADSGoogle Scholar
  2. Danby J.M.A.: Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. J. 69, 165–172 (1964)CrossRefADSMathSciNetGoogle Scholar
  3. Deprit A., Deprit-Bartholome A.: Stability of the triangular Lagrangian points. Astron. J. 72, 173–179 (1967)CrossRefADSGoogle Scholar
  4. Dvorak, R., Schwarz, R., Lhotka, Ch.: On the dynamics of Trojan planets in extrasolar planetary systems. In: Exoplanets: Detection, Formation and Dynamics. Proceedings of the IAU Symposium No. 249, pp. 461–468 (2008a)Google Scholar
  5. Dvorak R., Lhotka Ch., Schwarz R.: The dynamics of inclined Neptune Trojans. Celest. Mech. Dyn. Astr. 102, 97–110 (2008b)MATHCrossRefADSMathSciNetGoogle Scholar
  6. Efthymiopoulos C., Sándor Zs.: Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion. MNRAS 364, 253–271 (2005)CrossRefADSGoogle Scholar
  7. Érdi B., Sándor Zs.: Stability of co-orbital motion in exoplanetary systems. Celest. Mech. Dyn. Astr. 92, 113–121 (2005)MATHCrossRefADSGoogle Scholar
  8. Érdi B., Nagy I., Sándor Zs., Fröhlich G., Fröhlich G.: Secondary resonances of co-orbital motions. MNRAS 381, 33–40 (2007)CrossRefADSGoogle Scholar
  9. Giorgilli A., Skokos C.: On the stability of the Trojan asteroids. Astron. Astrophys. 317, 254–261 (1997)ADSGoogle Scholar
  10. Goździewski K., Konacki M.: Trojan pairs in the HD 128311 and HD 82943 planetary systems?. Astrophys. J. 647, 573–586 (2006)CrossRefADSGoogle Scholar
  11. Györgyey J.: On the non-linear stability of motions arouns (L 5) in the elliptic restricted problem of three bodies. Celest. Mech. 36, 281–285 (1985)MATHCrossRefADSGoogle Scholar
  12. Hou X.Y., Liu L.: Vertical bifurcation families from the long and short period families around the equilateral equilibrium points. Celest. Mech. Dyn. Astr. 101, 309–320 (2008)CrossRefADSMathSciNetGoogle Scholar
  13. Ji J., Kinoshita H., Liu L., Li G.: The secular evolution and dynamical architecture of the Neptunian triplet planetary system HD 69830. Astrophys. J. 657, 1092–1097 (2007)CrossRefADSGoogle Scholar
  14. Kinoshita H., Nakai H.: Quasi-satellites of Jupiter. Celest. Mech. Dyn. Astr. 98, 181–189 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  15. Laughlin G., Chambers J.E.: Extrasolar Trojans: the viability and detectability of planets in the 1:1 resonance. Astron. J. 124, 592–600 (2002)CrossRefADSGoogle Scholar
  16. Levison H., Shoemaker E., Shoemaker C.: The dispersal of the Trojan asteroid swarm. Nature 385, 42–44 (1997)CrossRefADSGoogle Scholar
  17. Lhotka Ch., Efthymiopoulos C., Dvorak R.: Nekhoroshev stability at L 4 or (L 5) in the elliptic restricted three-body problem—application to Trojan asteroids. MNRAS 384, 1165–1177 (2008)CrossRefADSGoogle Scholar
  18. Lohinger E., Dvorak R.: Stability regions aroud L 4 in the elliptic restricted problem. Astron. Astrophys. 280, 683–687 (1993)ADSGoogle Scholar
  19. Marchal C.: Predictability, stability and chaos in dynamical systems. In: Roy, A.E.(eds) Predictability, Stability and Chaos in N-Body Dynamical Systems, pp. 73–91. Plenum Press, New York (1991)Google Scholar
  20. Markellos V.V., Papadakis K.E., Perdios E.A.: Non-linear stability zones around the triangular Lagrangian points. In: Roy, A.E., Steves, B.(eds) From Newton to Chaos, pp. 371–377. Plenum Press, New York (1995)Google Scholar
  21. Marzari F., Scholl H.: On the instability of Jupiter’s Trojans. Icarus 159, 328–338 (2002)CrossRefADSGoogle Scholar
  22. Meire R.: The stability of the triangular points in the elliptic restricted problem. Celest. Mech. 23, 89–95 (1981)CrossRefADSMathSciNetGoogle Scholar
  23. Rabe E.: Two new classes of periodic Trojan librations in the elliptic restricted problem and their stabilities. In: Giacaglia, G.E.O.(eds) Periodic Orbits, Stability and Resonances, pp. 33–44. D. Reidel Publication Company, Dordrecht (1970)Google Scholar
  24. Rabe E.: Elliptic restricted problem: fourth-order stability analysis of the triangular points. In: Tapley, E.D., Szebehely, V.(eds) Recent Advances in Dynamical Astronomy, pp. 155–160. D. Reidel Publication Company, Dordrecht (1973)Google Scholar
  25. Robutel P., Gabern F.: The resonant structure of Jupiter’s Trojan asteroids—I. Long-term stability and diffusion. MNRAS 372, 1463–1482 (2006)CrossRefADSGoogle Scholar
  26. Szenkovits F., Makó Z.: About the Hill stability of extrasolar planets in stellar binary systems. Celest. Mech. Dyn. Astr. 101, 273–287 (2008)CrossRefADSGoogle Scholar
  27. Tschauner J.: Die Bewegung in der Nähe der Dreieckspunkte des elliptischen eingeschränkten Dreikörperproblems. Celest. Mech. 3, 189–196 (1971)MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Bálint Érdi
    • 1
  • Emese Forgács-Dajka
    • 1
  • Imre Nagy
    • 2
  • Renáta Rajnai
    • 1
  1. 1.Department of AstronomyEötvös UniversityBudapestHungary
  2. 2.Physical Geodesy and Geodesical Research Group of the HASTechnical UniversityBudapestHungary

Personalised recommendations