Celestial Mechanics and Dynamical Astronomy

, Volume 103, Issue 3, pp 267–279 | Cite as

Dynamics of planets in retrograde mean motion resonance

Original Article


In a previous paper (Gayon and Bois 2008a), we have shown the general efficiency of retrograde resonances for stabilizing compact planetary systems. Such retrograde resonances can be found when two-planets of a three-body planetary system are both in mean motion resonance and revolve in opposite directions. For a particular two-planet system, we have also obtained a new orbital fit involving such a counter-revolving configuration and consistent with the observational data. In the present paper, we analytically investigate the three-body problem in this particular case of retrograde resonances. We therefore define a new set of canonical variables allowing to express correctly the resonance angles and obtain the Hamiltonian of a system harboring planets revolving in opposite directions. The acquiring of an analytical “rail” may notably contribute to a deeper understanding of our numerical investigation and provides the major structures related to the stability properties. A comparison between our analytical and numerical results is also carried out.


Hamiltonian systems Planetary systems Resonance Periodic orbits Retrograde planets Resonant average Hamiltonian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaugé C., Michtchenko T.A.: Modelling the high-eccentricity planetary three-body problem, Application to the GJ876 planetary system. MNRAS 341, 760–770 (2003)CrossRefADSGoogle Scholar
  2. Bois E., Kiseleva-Eggleton L., Rambaux N., Pilat-Lohinger E.: Conditions of dynamical stability for the HD160691 planetary system. Astrophys. J. 598, 1312–1320 (2003)CrossRefADSGoogle Scholar
  3. Brouwer D., Clemence G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)Google Scholar
  4. Callegari N. Jr, Michtchenko T.A., Ferraz-Mello S.: Dynamics of two planets in the 2/1 mean-motion resonance. Celest. Mech. Dyn. Astron. 89, 201–234 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  5. Cincotta P., Simó C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials. Astron. Astrophys. Supp. 147, 205–228 (2000)CrossRefADSGoogle Scholar
  6. Gayon J., Bois E.: Are retrograde resonances possible in multi-planet systems?. Astron. Astrophys. 482, 665–672 (2008a)MATHCrossRefADSGoogle Scholar
  7. Gayon, J., Bois, E. Retrograde resonances in compact multi-planetary systems: a feasible stabilizing mechanism. In: Sun, Y.S., Ferraz-Mello, S., Zhou, J.L. (eds.) Exoplanets: Detection, Formation and Dynamics (IAU Symposium 249), IAU Proceedings, vol. 3, pp. 511–516. Cambridge University Press, Cambridge (2008b)Google Scholar
  8. Hadjidemetriou J.D.: Families of periodic planetary-type orbits in the three-body problem and their stability. Astrophys. Space Sci. 40, 201–224 (1976)MATHCrossRefADSMathSciNetGoogle Scholar
  9. Hadjidemetriou J.D.: Resonant periodic motion and the stability of extrasolar planetary Systems. Celest. Mech. Dyn. Astron. 83, 141–154 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  10. Hadjidemetriou J.D.: On periodic orbits and resonance in extrasolar planetary systems. Celest. Mech. Dyn. Astron. 102, 69–82 (2008)MATHCrossRefADSMathSciNetGoogle Scholar
  11. Hénon M.: A family of periodic solutions of the planar three-body problem and their stability. Celest. Mech. 13, 267–285 (1976)MATHCrossRefADSGoogle Scholar
  12. Henrard J., Libert A.S.: Periodic orbits as centers of stability in the secular 3D planetary three body problem. Celest. Mech. Dyn. Astron. 102, 177–189 (2008)MATHCrossRefADSMathSciNetGoogle Scholar
  13. Hughes S.: The computation of tables of Hansen coefficients. Celest. Mech. 25, 101–107 (1981)MATHCrossRefADSGoogle Scholar
  14. Ji J., Kinoshita H., Liu L., Li G., Nakai H.: The apsidal antialignment of the HD82943 system. Celest. Mech. Dyn. Astron. 87, 113–120 (2003)MATHCrossRefADSGoogle Scholar
  15. Ji J., Kinoshita H., Liu L., Li G.: The secular evolution and dynamical architecture of the neptunian triplet planetary system HD69830. Astrophys. J. 657, 1092–1097 (2007)CrossRefADSGoogle Scholar
  16. Kaula W.M.: Development of the lunar and solar disturbing functions for a close satellite. Astron. J. 67, 300–303 (1962)CrossRefADSGoogle Scholar
  17. Laplace P.S.: Traité de Mécanique Céleste. Imprimerie Royale, Paris (1979)Google Scholar
  18. Lee M.H., Peale S.J.: Dynamics and origin of the 2:1 orbital resonances of the GJ876 planets. Astrophys. J. 567, 596–609 (2002)CrossRefADSGoogle Scholar
  19. Lee M.H., Peale S.J.: Secular evolution of hierarchical planetary systems. Astrophys. J. 592, 1201–1216 (2003)CrossRefADSGoogle Scholar
  20. Michtchenko T.A., Ferraz-Mello S., Beaugé C.: Modeling the 3-D secular planetary three-body problem. Discussion on the outer υ Andromedae planetary system. Icarus 181, 555–571 (2006)CrossRefADSGoogle Scholar
  21. Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  22. Nagasawa M., Isa S., Bessho T.: Formation of hot planets by a combination of planet scattering, tidal circularization, and the Kozai mechanism. Astrophys. J. 678, 498–508 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.CNRS, Observatoire de la Côte d’Azur, Laboratoire CassiopéeNice Sophia-Antipolis UniversityNice Cedex 4France

Personalised recommendations