Celestial Mechanics and Dynamical Astronomy

, Volume 102, Issue 1–3, pp 207–218 | Cite as

Novel spaceways for reaching the Moon: an assessment for exploration

  • Ettore Perozzi
  • Alessio Di Salvo
Original Article


The renewed interest of the major space agencies for the exploration of the Moon has made a review of the present/near future scenario and the related accessible mission profiles desirable. In particular the application of the dynamical systems approach to spaceflight dynamics could bring a significant contribution. A simple method for evaluating the efficiency of these novel spaceways for reaching the Moon if compared to more traditional mission profiles is presented and some general considerations on their utilization for automatic precursor missions as well as for the setting up and the maintenance of a Moon Base are discussed.


Exploration Lunar transfers Manifold dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bate R.R., Mueller D.D., White J.E.: Fundamentals of Astrodynamics. Dover Publications Inc., New York (1971)Google Scholar
  2. Belbruno, E.A., Carrico, J.P.: Construction of Weak Stability Boundary ballistic Lunar transfer trajectories. AIAA 2000-4142 (2000)Google Scholar
  3. Belbruno, E.A., Miller, J.: A ballistic lunar capture trajectory for the Japanese spacecraft Hiten. JPL report IOM 312/90.4-1317 (1990)Google Scholar
  4. Bellò Mora, M., Graziani, F., Teofilatto, P., Circi, C., Porfilio, M., Hechler, M.: A systematic analysis on WSB transfers to the Moon. Paper IAF-00-A.6.03 (2000)Google Scholar
  5. Biesbroek R., Janin G.: Ways to the Moon. ESA Bull 103, 92–99 (2000)Google Scholar
  6. Boden D.G.: Introduction to astrodynamics. In: Larson, W.J., Wertz, J.R.(eds) Space Mission, Analysis and Design, 2nd edn., Kluwer Academic Publishers, Dordrecht, The Netherlands (1997)Google Scholar
  7. Carrico, J., Fletcher, E.: Software architecture and use of satellite tool kit’s astrogator module for libration point orbit missions. In: Proceedings of the Libration Point Orbits And Applications, Spain (2002)Google Scholar
  8. Carusi A., Perozzi E., Scholl A.: Mitigation strategy. C.R. Phys. 6, 367–374 (2005). doi: 10.1016/j.crhy.2005.01.006 CrossRefADSGoogle Scholar
  9. Criswell, D.R.: Lunar–Solar power system. In: Encyclopedia of Energy, vol. 3. Elsevier Inc., pp. 677–689 (2004)Google Scholar
  10. Circi C., Teofilatto P.: On the dynamics of weak stability boundary lunar transfers. Celest. Mech. Dyn. Astron. 79(1), 41–72 (2001). doi: 10.1023/A:1011153610564 MATHCrossRefADSGoogle Scholar
  11. Circi C., Teofilatto P.: Weak stability boundary trajectories for the deployment of lunar spacecraft constellations. Celest. Mech. Dyn. Astron. 95(1–4), 371–390 (2006). doi: 10.1007/s10569-006-9020-2 MATHCrossRefADSMathSciNetGoogle Scholar
  12. Coradini, A., et al.: The Moon: an unavoidable step in the exploration of the Solar System. INAF/ASI LUNA-SCI-RS-002-E 6 Final Report (2007)Google Scholar
  13. Di Corato, R.: Scenari di Trasporto Spaziale per la Costruzione ed il Mantenimento di una Base Lunare. Laurea Thesis, Università di Roma ‘La Sapienza’ (2004)Google Scholar
  14. Farquhar R.W., Kamel A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458–473 (1973). doi: 10.1007/BF01227511 MATHCrossRefADSGoogle Scholar
  15. Fiorilode Melo C., Winter O.C.: Alternative paths to Earth–Moon transfer. Math. Probl. Eng. N.Y. 2006, 1–20 (2006). doi: 10.1155/MPE/2006/34317 CrossRefGoogle Scholar
  16. Garcia F., Gomez G.: A note on Weak Stability Boundaries. Celest. Mech. Dyn. Astron. 97(2), 87–100 (2007). doi: 10.1007/s10569-006-9053-6 MATHCrossRefADSMathSciNetGoogle Scholar
  17. Gomez G., Llibre J., Martinez R., Simo C.: Dynamics and Mission Design Near Libration Point Orbits—Volume 1: Fundamentals: The Case of Collinear Libration Points. World Scientific, Singapore (2001)Google Scholar
  18. Gómez G., Koon W.S., Lo M.W., Marsden J.E., Masdemont J.J., Ross S.D.: Connecting orbits and invariant manifolds in the spatial restricted three body problem. Nonlinearity 17, 1571–1606 (2004). doi: 10.1088/0951-7715/17/5/002 MATHCrossRefADSMathSciNetGoogle Scholar
  19. Hechler, M., Cano, J.L., Yanez, A.: SMART-1 mission analysis: asteroid option. ESOC MAS WP 403 (1998)Google Scholar
  20. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: The Genesis Trajectory and Heteroclinic Connections. AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, AAS 99-451 (1999)Google Scholar
  21. Lo, M.W., Ross, S.D.: The lunar L1 gateway: portal to the stars and beyond. In: Proceedings of the AIAA Space 2001 Conference, Albuquerque (2001)Google Scholar
  22. Lo M., Williams B.G., Bollman W.E., Han D., Hahn Y., Bell J.L., Hirst E.A., Corwin R.A., Hong P.E., Howell K.C., Barden B., Wilson R.: Genesis mission design. J. Astron. Sci. 49, 169–184 (2001)Google Scholar
  23. Loucks, M., Carrico, J., Carrico, T., Deiterich, C.: A comparison of lunar landing trajectory strategies using numerical simulations. In: International Lunar Conference, Canada (2005)Google Scholar
  24. McLaughlin W.I.: Walter Hohmann’s roads in space. J. Space Mission Arch. 2, 1–14 (2000)Google Scholar
  25. Nozette S., Lichtenberg C.L., Spudis P., Bonner R., Ort W., Malaret E. et al.: The Clementine Bistatic Radar Experiment. Science 274(5292), 1495–1498 (1996). doi: 10.1126/science.274.5292.1495 CrossRefADSGoogle Scholar
  26. Parker, J.S.: Families of Low-Energy Lunar Halo Transfers. AAS/AIAA Spaceflight Dynamics Conference, AAS 06-132 (2006)Google Scholar
  27. Parker, J.S., Born, G.H.: Direct Lunar Halo Orbit Transfers. AAS/AIAA Spaceflight Mechanics Conference, AAS 07-229 (2007)Google Scholar
  28. Parker, J.S., Lo, M.W.: Shoot the Moon 3D. AIAA/AAS Astrodynamics Specialist Conference, AIAA 2005-383 (2005)Google Scholar
  29. Pearson, J.: Using The Orbital Tower to Launch Earth Escape Payloads Daily. AIAA paper IAF 76-123 (1976)Google Scholar
  30. Perozzi E., Di Salvo A.: Moon Harbor, the Moon Base Gateway. In: Compagnone, F., Perozzi, E.(eds) Proceedings of the Moon Base: a Challenge for Humanity, Donzelli Editore, Roma (2007)Google Scholar
  31. Perozzi E., Rossi A., Valsecchi G.B.: Basic Targeting Strategies for Rendezvous and Flyby Missions to the Near-Earth Asteroids. Planet Space Sci. 49, 3–22 (2001). doi: 10.1016/S0032-0633(00)00124-0 CrossRefADSGoogle Scholar
  32. Perozzi, E., Ponzi, S., Circi, C., Graziani, F., Teofilatto, P., Giovangrossi, G., Piccolo, F.: Highways to Moon Base. In: Proceedings of the Moon Base Conference—Washington Workshop, (2005)
  33. Prussing, J.E., Conway, B.A.: Orbital Mechanics. Oxford University Press (1993)Google Scholar
  34. Sarver-Verhey, T.S., Kerslake, T.W., Rawlin, V.K., Falck, R.D., Dudzinski, L.J., Oleson, S.R.: Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth–Moon L1. NASA/TM-2002-211970, AIAA-2002-3971 (2002)Google Scholar
  35. STK: Satellite ToolKit, developed by Analytical Graphics Inc., (2007)
  36. Strizzi, J.D., Kutrieb, J., Damphousse, P., Carrico, J.: Sun–Mars Libration Points and Mars Mission Simulations. AAS/AIAA Spaceflight Mechanics Meeting, AAS 01-159 (2001)Google Scholar
  37. Van Susante, P.J., Heiss, K.P.: 2005. A Condominium of Observatories on the Moon. J. Wash. Acad. Sci., Summer 2005 issue, 1–27 (2005)Google Scholar
  38. Woodcock G.R.: Mission and Operations Modes for Lunar Basing. In: Mendell, W.W.(eds) Lunar Bases and Space Activities of the 21st Century, pp. 111–124. Lunar and Planetary Institute, Houston (1985)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.TelespazioRomeItaly
  2. 2.Rheinmetall ItaliaRomeItaly

Personalised recommendations