Advertisement

Exact solution of a triaxial gyrostat with one rotor

  • Antonio Elipe
  • Víctor Lanchares
Original Article

Abstract

The problem of the attitude dynamics of a triaxial gyrostat under no external torques and one constant internal rotor, is a three degrees-of-freedom system, although thanks to the existence of integrals of motion it can be reduced to only one degree-of-freedom problem. We introduce coordinates to represent the orbits of constant angular momentum as a flow on a sphere. This representation shows that the problem is equivalent to a quadratic Hamiltonian depending on two parameters. We find the exact solution of the orbits in terms of elliptic functions. By making use of properties of elliptic functions we find the solution at each region of the parametric partition from the solution of one region. We also prove that heteroclinic orbits are planar curves.

Keywords

Attitude motion Gyrostat Elliptic functions 

References

  1. Abad A., Elipe A., Vallejo M.: Automated Fourier series expansions for elliptic functions. Mech. Res. Commun. 21, 361–366 (1994)CrossRefMATHGoogle Scholar
  2. Abad A., Elipe A., Vallejo M.: Normalization of perturbed non-linear Hamiltonian oscillators. Int. J. Nonlinear Mech. 32, 443–453 (1997)CrossRefMathSciNetMATHGoogle Scholar
  3. Abad A., Elipe A., Palacián J., San-Juan J.F.: ATESAT: A symbolic processor for artificial satellite theory. Math. Comput. Simul. 45, 497–510 (1998)CrossRefMATHGoogle Scholar
  4. Bowman F.: Introduction to Elliptic Functions with Applications. Dover Pub., New York (1961)MATHGoogle Scholar
  5. Byrd P.F., Friedman M.D.: Handbook of Elliptic Integrals for Engineers an Physicists. Springer Verlag, Berlin (1954)Google Scholar
  6. Coffey S.L., Deprit A., Deprit E., Healy L.: Painting the phase space portrait of an integrable dynamical system. Science 247, 833–836 (1990)CrossRefADSMathSciNetGoogle Scholar
  7. Cochran J.E., Shu P.H., Rew S.D.: Attitude motion of asymmetric dual-spin spacecraft. J. Guid. Control Dyn. 5, 37–42 (1982)CrossRefMATHGoogle Scholar
  8. Deprit A., Elipe A.: Complete reduction of the Euler–Poinsot problem. J. Astronaut. Sci. 41, 603–628 (1993)ADSMathSciNetGoogle Scholar
  9. Elipe A., Lanchares V.: Biparametric quadratic Hamiltonians on the unit sphere: complete classification. Mech. Res. Commun. 21, 209–214 (1994)CrossRefMathSciNetMATHGoogle Scholar
  10. Elipe A., Lanchares V.: Phase flow of an axially symmetrical gyrostat with one constant rotor. J. Math. Phys. 38, 3533–3544 (1997a)CrossRefADSMathSciNetMATHGoogle Scholar
  11. Elipe A., Lanchares V.: Two equivalent problems: Gyrostats in free motion and parametric quadratic Hamiltonians. Mech. Res. Commun. 24, 583–590 (1997b)CrossRefMathSciNetMATHGoogle Scholar
  12. Elipe A., Vallejo M.: On the attitude dynamics of perturbed triaxial rigid bodies. Celest. Mech. Dyn. Astron. 81, 3–12 (2001)CrossRefADSMathSciNetMATHGoogle Scholar
  13. Frauendiener J.: Quadratic Hamiltonians on the unit sphere. Mech. Res. Commun. 22, 313–317 (1995)CrossRefMathSciNetMATHGoogle Scholar
  14. Hall C.D.: Equivalence of two classes of dual-spin spacecraft spinup dynamics. J. Guid. Control Dyn. 15, 1032–1034 (1992)CrossRefADSGoogle Scholar
  15. Hall C.D.: Spinup dynamics of biaxialgyrostats. J. Astronaut. Sci. 43, 263–275 (1995a)MathSciNetGoogle Scholar
  16. Hall C.D.: Spinup dynamics of gyrostats. J. Guid. Control Dyn. 18, 1177–1183 (1995b)CrossRefMATHGoogle Scholar
  17. Hall C.D., Rand R.H.: Spinup dynamics of axial dual-spin spacecraft. J. Guid. Control Dyn. 17, 30–37 (1994)CrossRefGoogle Scholar
  18. Henrard J., Wauthier P.: A geometric approach to the ideal resonance problem. Celest. Mech. 44, 227–238 (1989)ADSMathSciNetGoogle Scholar
  19. Holmes P.J., Marsden J.E.: Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. Indiana Univ. Math. J. 32, 273–309 (1983)CrossRefMathSciNetMATHGoogle Scholar
  20. Howland R.A.: A note on the application of a generalized canonical approach to non-linear Hamiltonian systems. Celest. Mech. 45, 407–412 (1989)ADSMathSciNetMATHGoogle Scholar
  21. Hughes P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)Google Scholar
  22. Iñarrea M., Lanchares V.: Chaos in the reorientation process of a dual-spin spacecraft with time dependent moments of inertia. Int. J. Bifurcat Chaos 10, 997–1018 (2000)MATHGoogle Scholar
  23. Koiller J.: A mechanical system with a “wild” horseshoe. J. Math. Phys. 25, 1599–1604 (1983)CrossRefADSMathSciNetGoogle Scholar
  24. Lanchares, V.: Sistemas dinámicos bajo la acción del grupo SO(3): El caso de un Hamiltoniano cuadrático. Ph.D. dissertation, University of Zaragoza (in Spanish) (1993)Google Scholar
  25. Lanchares V., Elipe A.: Bifurcations in biparametric quadratic potentials. Chaos 5, 367–373 (1995a)CrossRefADSMathSciNetMATHGoogle Scholar
  26. Lanchares V., Elipe A.: Bifurcations in biparametric quadratic potentials II. Chaos 5, 531–535 (1995b)CrossRefADSMathSciNetMATHGoogle Scholar
  27. Lanchares V. et al.: Surfaces of bifurcation in a triparametric quadratic Hamiltonian. Phys. Rev. E 52, 5540–5548 (1995)CrossRefADSMathSciNetGoogle Scholar
  28. Lanchares V., Iñarrea M., Salas J.P.: Spin rotor stabilization of a dual-spin spacecraft with time dependent moments of inertia. Int. J. Bifurcat. Chaos 8, 609–617 (1998)CrossRefMATHGoogle Scholar
  29. Leimanis E.: The General Problem of the Motion of Coupled Rigid Bodies About a Fixed Point. Springer Verlag, Berlin (1965)MATHGoogle Scholar
  30. Miller B.R., Coppola V.T.: Synchronization of perturbed non-linear Hamiltonians. Celest. Mech. Dyn. Astron. 55, 331–350 (1993)CrossRefADSMathSciNetMATHGoogle Scholar
  31. Poinsot L.: Théorie nouvelle de la rotation des corps. J. Math. Pures Appl. 16, 289–336 (1851)Google Scholar
  32. Vera J.A., Vigueras A.: Hamiltonian dynamics of a gyrostat in the n-body problem: relative equilibria. Celest. Mech. Dyn. Astron. 94, 289–315 (2006)CrossRefADSMathSciNetMATHGoogle Scholar
  33. Volterra V.: Sur la théorie des variations des latitudes. Acta Math. 22, 201–358 (1899)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Grupo de Mecánica Espacial and IUMAUniversidad de ZaragozaZaragozaSpain
  2. 2.Department of Mathematics and ComputationUniversidad de la RiojaLogroñoSpain

Personalised recommendations