Skip to main content
Log in

The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In the method of variation of parameters we express the Cartesian coordinates or the Euler angles as functions of the time and six constants. If, under disturbance, we endow the “constants” with time dependence, the perturbed orbital or angular velocity will consist of a partial time derivative and a convective term that includes time derivatives of the “constants”. The Lagrange constraint, often imposed for convenience, nullifies the convective term and thereby guarantees that the functional dependence of the velocity on the time and “constants” stays unaltered under disturbance. “Constants” satisfying this constraint are called osculating elements. Otherwise, they are simply termed orbital or rotational elements. When the equations for the elements are required to be canonical, it is normally the Delaunay variables that are chosen to be the orbital elements, and it is the Andoyer variables that are typically chosen to play the role of rotational elements. (Since some of the Andoyer elements are time-dependent even in the unperturbed setting, the role of “constants” is actually played by their initial values.) The Delaunay and Andoyer sets of variables share a subtle peculiarity: under certain circumstances the standard equations render the elements nonosculating. In the theory of orbits, the planetary equations yield nonosculating elements when perturbations depend on velocities. To keep the elements osculating, the equations must be amended with extra terms that are not parts of the disturbing function [Efroimsky, M., Goldreich, P.: J. Math. Phys. 44, 5958–5977 (2003); Astron. Astrophys. 415, 1187–1199 (2004); Efroimsky, M.: Celest. Mech. Dyn. Astron. 91, 75–108 (2005); Ann. New York Acad. Sci. 1065, 346–374 (2006)]. It complicates both the Lagrange- and Delaunay-type planetary equations and makes the Delaunay equations noncanonical. In attitude dynamics, whenever a perturbation depends upon the angular velocity (like a switch to a noninertial frame), a mere amendment of the Hamiltonian makes the equations yield nonosculating Andoyer elements. To make them osculating, extra terms should be added to the equations (but then the equations will no longer be canonical). Calculations in nonosculating variables are mathematically valid, but their physical interpretation is not easy. Nonosculating orbital elements parameterise instantaneous conics not tangent to the orbit. (A nonosculating i may differ much from the real inclination of the orbit, given by the osculating i.) Nonosculating Andoyer elements correctly describe perturbed attitude, but their interconnection with the angular velocity is a nontrivial issue. The Kinoshita–Souchay theory tacitly employs nonosculating Andoyer elements. For this reason, even though the elements are introduced in a precessing frame, they nevertheless return the inertial velocity, not the velocity relative to the precessing frame. To amend the Kinoshita–Souchay theory, we derive the precessing-frame-related directional angles of the angular velocity relative to the precessing frame. The loss of osculation should not necessarily be considered a flaw of the Kinoshita–Souchay theory, because in some situations it is the inertial, not the relative, angular velocity that is measurable [Schreiber, K. U. et al.: J. Geophys. Res. 109, B06405 (2004); Petrov, L.: Astron. Astrophys. 467, 359–369 (2007)]. Under these circumstances, the Kinoshita–Souchay formulae for the angular velocity should be employed (as long as they are rightly identified as the formulae for the inertial angular velocity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah K. and Albouy A. (2001). On a strange resonance noticed by M. Herman. Regular and Chaotic Dynamics 6: 421–432

    Article  MATH  Google Scholar 

  • Andoyer H. (1923). Cours de Mécanique Céleste. Gauthier-Villars, Paris

    MATH  Google Scholar 

  • Boccaletti D. and Pucacco G. (2002). Theory of Orbits. Volume 2: Perturbative and Geometrical Methods, Chapter 8. Springer Verlag, Heidelberg

    Google Scholar 

  • Brouwer D. and Clemence G.M. (1961). Methods of Celestial Mechanics. Chapter XI. Academic Press, NY &

    Google Scholar 

  • Deprit A. (1969). Canonical transformations depending on a small parameter. Celest. Mech. 1: 12–30

    Article  MATH  ADS  Google Scholar 

  • Deprit A. and Elipe A. (1993). Complete reduction of the Euler-Poinsot problem. J Astronaut Sci 41(4): 603–628

    Google Scholar 

  • Efroimsky, M.: Equations for the orbital elements. Hidden symmetry. Preprint no 1844 of the Institute of Mathematics and its Applications, University of Minnesota (2002a) http://www.ima.umn.edu/ preprints/feb02/feb02.html

  • Efroimsky, M.: The implicit gauge symmetry emerging in the n-body problem of celestial mechanics (2002b) astro-ph/0212245

  • Efroimsky M. and Goldreich P. (2003). Gauge symmetry of the N-body problem in the Hamilton–Jacobi approach. J. Math. Phys. 44: 5958–5977. astro-ph/0305344

    Article  MATH  ADS  Google Scholar 

  • Efroimsky M. and Goldreich P. (2004). Gauge freedom in the N-body problem of celestial mechanics. Astron. Astrophys. 415: 1187–1199. astro-ph/0307130

    Article  ADS  Google Scholar 

  • Efroimsky, M.: On the theory of canonical perturbations and its application to Earth rotation. Talk at the conference Journées 2004: Systèmes de référence spatio-temporels, l’Observatoire de Paris, 20–22 septembre (2004) astro-ph/0409282

  • Efroimsky M. (2005). Long-term evolution of orbits about a precessing oblate planet. The case of uniform precession. Celest. Mech. Dynam. Astron. 91: 75–108. astro-ph/0408168

    Article  MATH  ADS  Google Scholar 

  • Efroimsky M. (2006). Gauge freedom in orbital mechanics. Ann New York Acad Sci. 1065: 346–374. astro-ph/0603092

    Article  ADS  Google Scholar 

  • Escapa A., Getino J. and Ferrándiz J. (2001). Canonical approach to the free nutations of a three-layer Earth model. J. Geophys. Res. 106(B6): 11387–11397

    Article  ADS  Google Scholar 

  • Escapa A., Getino J. and Ferrándiz J. (2002). Indirect effect of the triaxiality in the Hamiltonian theory for the rigid Earth nutations. Astron Astrophys. 389: 1047–1054

    Article  ADS  Google Scholar 

  • Fukushima T. and Ishizaki H. (1994). Elements of spin motion. Celest. Mech. Dyn. Astron. 59: 149–159

    Article  MATH  ADS  Google Scholar 

  • Getino J. and Ferrándiz J. (1990). A Hamiltonian theory for an elastic earth. Canonical variables and kinetic energy. Celest. Mech. Dyn. Astron. 49: 303–326

    Article  ADS  Google Scholar 

  • Getino J. and Ferrándiz J. (1994). A rigorous Hamiltonian approach to the rotation of elastic bodies. Celest. Mech. Dyn. Astron. 58: 277–295

    Article  MATH  ADS  Google Scholar 

  • Giacaglia G.E.O. and Jefferys W.H. (1971). Motion of a space station. I. Celest. Mech. 4: 442–467

    Google Scholar 

  • Goldreich P. (1965). Inclination of satellite orbits about an oblate precessing planet. Astron. J. 70: 5–9

    Article  ADS  Google Scholar 

  • Goldstein H. (1981). Classical Mechanics. Addison-Wesley, Reading MA

    Google Scholar 

  • Gurfil, P., Elipe, A., Tangren, W., Efroimsky, M.: The Serret-Andoyer formalism in rigit-body dynamics: I. Symmetries and perturbations. Submitted to Regular and Chaotic Dynamics (2007) astro-ph/0607201

  • Hori G.-I. (1966). Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn 18: 287–296

    ADS  Google Scholar 

  • Kholshevnikov, K.V.: Lie transformations in celestial mechanics. In: Astronomy and Geodesy. Thematic Collection of Papers, 4, Issue 4, pp. 21–45. Published by the Tomsk State University Press, Tomsk, Russia (1973) (in Russian)

  • Kholshevnikov, K.V.: Asymptotic Methods of Celestial Mechanics, Chapter 5. Leningrad State University Press, St.Petersburg, Russia (1985) /in Russian/

  • Kinoshita H. (1972). First-order perturbations of the two finite-body problem. Pub. Astron. Soc. Jpn. 24: 423–457

    ADS  Google Scholar 

  • Kinoshita H. (1977). Theory of the rotation of the rigid Earth. Celest. Mech. 15: 277–326

    Article  ADS  Google Scholar 

  • Kinoshita H., Nakajima K., Kubo Y., Nakagawa I., Sasao T. and Yokoyama K. (1978). Note on nutation in ephemerides. Publi. Int. Latitude Observat. Mizusawa XII(1): 71–108

    Google Scholar 

  • Kinoshita H. and Souchay J. (1990). The theory of the nutation for the rigid-Earth model at the second order. Celest. Mech. Dyn. Astron. 48: 187–265

    Article  ADS  Google Scholar 

  • Laskar J. and Robutel J. (1993). The chaotic obliquity of the planets. Nature 361: 608–612

    Article  ADS  Google Scholar 

  • Lieske J.H., Lederle T., Fricke W. and Morando B. (1977). Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants. Astron. Astrophys. 58: 1–16

    ADS  Google Scholar 

  • Mysen E. (2004). Rotational dynamics of subsolar sublimating triaxial comets. Planet. Space Sci. 52: 897–907

    Article  ADS  Google Scholar 

  • Mysen E. (2006). Canonical rotation variables and non-Hamiltonian forces: solar radiation pressure effects on asteroid rotation. Monthly Notices Roy. Astron. Soc. 372: 1345–1350

    Article  ADS  Google Scholar 

  • Peale S.J. (1973). Rotation of solid bodies in the solar system. Rev. Geophys. Space Phy. 11: 767–793

    ADS  Google Scholar 

  • Peale S.J. (1976). Excitation and relaxation of the wobble, precession and libration of the Moon. J Geophy. Res. 81: 1813–1827

    ADS  Google Scholar 

  • Petrov L. (2007). The empirical Earth-rotation model from VLBI observations. Astron Astrophys. 467: 359–369

    Article  ADS  Google Scholar 

  • Plummer H.C. (1918). An Introductory Treatise on Dynamical Astronomy. Cambridge University Press, UK

    Google Scholar 

  • Poincaré, H. Sur une forme nouvelle des équations du problème des trois corps. Bull. Astron. 14, 53–67 (1897). For modern edition see: Œuvres de Henri Poincaré, Tome VII, pp. 500–511. Gauthier-Villars, Paris (1950)

    Google Scholar 

  • Radau, R.: Sur la rotation des corps solides. Annales de l’Ecole Normale Supérieure. 1resérie. Tome 6, 233–250 (1869) http://www.numdam.org/item?id=ASENS_1869_1_6_233_0

  • Richelot, F.J.: Eine neue Lœsung des Problemes der Rotation eines festen Körpers um einen Punkt. Abhandlungen der Königlichen Preuβischen Akademie der Wissenschaften zu Berlin. Math., 1–60 (1850)

  • Seidelmann, P.K. (1992). Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley CA

    Google Scholar 

  • Serret J.A. (1866). Mémoire sur l’emploi de la méthode de la variation des arbitraires dans la théorie des mouvements de rotation. Mémoires de l’Academie des Sciences de Paris 55: 585–616

    Google Scholar 

  • Schreiber K.U., Velikoseltsev A., Rothacher M., Klügel T., Stedman G.E. and Wiltshire D.L. (2004). Direct measurements of diurnal polar motion by ring laser gyroscopes. J. Geophys. Res. 109: B06405

    Article  Google Scholar 

  • Souchay J., Losley B., Kinoshita H. and Folgueira M. (1999). Corrections and new developments in rigid Earth nutation theory. III. Final tables “REN-2000” including crossed-nutation and spin–orbit coupling effects. Astron. Astrophys. Suppl. 135, 111–131

    Article  ADS  Google Scholar 

  • Synge J.L. and Griffith B.A. (1959). Principles of Mechanics. McGraw-Hill, NY

    Google Scholar 

  • Tisserand F. (1889). Traité de mécanique Céleste. Gauthier-Villars, Paris

    Google Scholar 

  • Touma J. and Wisdom J. (1993). The chaotic obliquity of Mars. Science 259(5099): 1294–1297

    Article  ADS  Google Scholar 

  • Touma J. and Wisdom J. (1994). Lie-Poisson integrators for rigid body dynamics in the solar system. Astron. J. 107: 1189–1202

    Article  ADS  Google Scholar 

  • Zanardi M. and Vilhena de Moraes R. (1999). Analytical and semi-analytical analysis of an artificial satellite’s rotational motion. Celest. Mech. Dyn. Astron. 75: 227–250

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Efroimsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efroimsky, M., Escapa, A. The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables. Celestial Mech Dyn Astr 98, 251–283 (2007). https://doi.org/10.1007/s10569-007-9080-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-007-9080-y

Keywords

Navigation