Celestial Mechanics and Dynamical Astronomy

, Volume 98, Issue 2, pp 75–93

# Dynamics of a particle in a gravitational field of a homogeneous annulus disk

• Angelo Alberti
• Claudio Vidal
Original Article

## Abstract

We formulate the problem of an infinitesimal particle moving in the space under the influence of the gravitational force induced by a homogeneous annulus disk fixed on a plane. We compute using different coordinates and in terms of an elliptic integral the potential associated to this problem. Also we study the symmetries of the associated potential. After that, we look at the dynamics in some particular cases, namely: in the line perpendicular to the plane that contains the annulus disk and passes through the center of the ring and on the plane that contains the massive annulus.

## Keywords

Gravitational attraction of a particle by a homogeneous annulus disk Symmetries Dynamics Circular Solutions

70F15 37N05

## References

1. Alberti, A.: Dinâmica de uma partícula no potencial de um fio circular homogêneo. Master thesis, Departamento de Matemática—UFPE (2003)Google Scholar
2. Arnold V.I. (1978). Mathematical Methods of Classical Mechanics. Springer, New York
3. Azevêdo, C., Cabral, H., Ontaneda, P.: On the Fixed Homogeneous Circle Problem. ArXiv: math.DS/0307329v5 (2005)Google Scholar
4. Belbruno E., Llibre J., Ollé M. (1994). On the families of periodic orbits which bifurcate from the circular Sitnikov motions. Celest. Mech. Dynam. Astronom. 60: 99–129
5. Broucke R.A., Elipe A. (2005). The Dynamics of Orbits in a Potential Field of a solid Circular Ring. Regular Chaotic Dynam 10(2): 129–143
6. Byrd P.F., Friedman M.D. (1954). Handbook of Elliptic Integrals for Engineers and Physicists. Springer Verlag, Berlin, 355
7. Elipe A., Riaguas A., Lara M. (1999). Periodic orbits around a massive straight segment. Celest. Mech. Dynam. Astronom 73: 169–178
8. Elipe A., Riaguas A. (2003). Nonlinear stability under a logarithmic gravity field. Intern. Math. J. 3(4): 435–453
9. Elipe A., Lara M. (2003). A simple model for the chaotic motion around (433) Eros. J. Astron. Sci. 51(4): 391–404
10. Kellog O.D. (1929). Fundations of the Potential Theory. Dover Publications, Inc., New York Google Scholar
11. Lass H., Blitzer L. (1983). The gravitational potential due to uniform disk and rings. Celest. Mech. 30: 225–228
12. MacMillan W.D. (1958). The Theory of the Potential. Dover Publications, Inc., New York
13. Vidal, C., Alberti, A.: Periodic solutions of a particle in a potential field of a planar massive annulus. Preprint (2006)Google Scholar