Dynamics of a particle in a gravitational field of a homogeneous annulus disk

  • Angelo Alberti
  • Claudio Vidal
Original Article


We formulate the problem of an infinitesimal particle moving in the space under the influence of the gravitational force induced by a homogeneous annulus disk fixed on a plane. We compute using different coordinates and in terms of an elliptic integral the potential associated to this problem. Also we study the symmetries of the associated potential. After that, we look at the dynamics in some particular cases, namely: in the line perpendicular to the plane that contains the annulus disk and passes through the center of the ring and on the plane that contains the massive annulus.


Gravitational attraction of a particle by a homogeneous annulus disk Symmetries Dynamics Circular Solutions 

Mathematics Subject Classifications

70F15 37N05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberti, A.: Dinâmica de uma partícula no potencial de um fio circular homogêneo. Master thesis, Departamento de Matemática—UFPE (2003)Google Scholar
  2. Arnold V.I. (1978). Mathematical Methods of Classical Mechanics. Springer, New York MATHGoogle Scholar
  3. Azevêdo, C., Cabral, H., Ontaneda, P.: On the Fixed Homogeneous Circle Problem. ArXiv: math.DS/0307329v5 (2005)Google Scholar
  4. Belbruno E., Llibre J., Ollé M. (1994). On the families of periodic orbits which bifurcate from the circular Sitnikov motions. Celest. Mech. Dynam. Astronom. 60: 99–129 MATHCrossRefADSGoogle Scholar
  5. Broucke R.A., Elipe A. (2005). The Dynamics of Orbits in a Potential Field of a solid Circular Ring. Regular Chaotic Dynam 10(2): 129–143 MATHCrossRefMathSciNetGoogle Scholar
  6. Byrd P.F., Friedman M.D. (1954). Handbook of Elliptic Integrals for Engineers and Physicists. Springer Verlag, Berlin, 355 MATHGoogle Scholar
  7. Elipe A., Riaguas A., Lara M. (1999). Periodic orbits around a massive straight segment. Celest. Mech. Dynam. Astronom 73: 169–178 MATHCrossRefADSMathSciNetGoogle Scholar
  8. Elipe A., Riaguas A. (2003). Nonlinear stability under a logarithmic gravity field. Intern. Math. J. 3(4): 435–453 MathSciNetGoogle Scholar
  9. Elipe A., Lara M. (2003). A simple model for the chaotic motion around (433) Eros. J. Astron. Sci. 51(4): 391–404 MathSciNetGoogle Scholar
  10. Kellog O.D. (1929). Fundations of the Potential Theory. Dover Publications, Inc., New York Google Scholar
  11. Lass H., Blitzer L. (1983). The gravitational potential due to uniform disk and rings. Celest. Mech. 30: 225–228 MATHCrossRefADSMathSciNetGoogle Scholar
  12. MacMillan W.D. (1958). The Theory of the Potential. Dover Publications, Inc., New York MATHGoogle Scholar
  13. Vidal, C., Alberti, A.: Periodic solutions of a particle in a potential field of a planar massive annulus. Preprint (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal de PernambucoRecife-PeBrasil
  2. 2.Departamento de Matemática, Facultad de CienciasUniversidad del Bio BioConcepción, VIII-RegiónChile

Personalised recommendations