Celestial Mechanics and Dynamical Astronomy

, Volume 94, Issue 2, pp 155–171 | Cite as

Solar Sail Halo Orbits at the Sun–Earth Artificial L 1 Point



Halo orbits for solar sails at artificial Sun–Earth L1 points are investigated by a third order approximate solution. Two families of halo orbits are explored as defined by the sail attitude. Case I: the sail normal is directed along the Sun-sail line. Case II: the sail normal is directed along the Sun–Earth line. In both cases the minimum amplitude of a halo orbit increases as the lightness number of the solar sail increases. The effect of the z-direction amplitude on x- or y-direction amplitude is also investigated and the results show that the effect is relatively small. In case I, the orbit period increases as the sail lightness number increases, while in case II, as the lightness number increases, the orbit period increases first and then decreases after the lightness number exceeds ~0.01.


halo orbit libration point solar sail 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breakwell, J. V., Brown, J. V. 1979‘The ‘Halo’ family of 3-dimensional periodic orbits in the earth–moon restricted 3-body problem’Celest. Mech.20389404ADSGoogle Scholar
  2. Farquhar, R. W. 1970The Control and Use of Libration-Point SatelliteGoddard Space Flight CenterGreenbelt, MDNASA TR R-346Google Scholar
  3. Farquhar, R. W. 1971The Utilization of Halo Orbits in Advanced Lunar OperationsGoddard Space Flight CenterGreenbelt, MDNASA TN D-6365Google Scholar
  4. Farquhar, R. W., Kamel, A. A. 1973‘Quasi-periodic orbits about the thanslunar libration point’Celest. Mech.7458473ADSGoogle Scholar
  5. Farquhar, R. W., Muhonen, D. P., Richardson, D. L. 1977‘Mission design for a halo orbiter of the earth’J. Spacecraft Rockets14170177ADSGoogle Scholar
  6. Farquhar, R. W., Muhonen, D. P., Newman, C. R., Heuberber, H. S. 1980‘Trajectories and orbital maneuvers for the first libration-point satellite’J. Guidance Control3549554Google Scholar
  7. Howell, K. C. 1984‘Three-dimensional, periodic, ‘halo’ orbit’Celest. Mech.325371ADSMATHMathSciNetGoogle Scholar
  8. Howell, K. C., Breakwell, J. V. 1984‘Almost rectilinear halo orbit’Celest. Mech.322952ADSMathSciNetGoogle Scholar
  9. Howell, K. C., Pernicka, H. J. 1988‘Numerical determination of lissajous trajectories in the restricted three-body problem’Celest. Mech.41107124ADSGoogle Scholar
  10. McInnes, A. I. S. 2000Strategies for Solar Sail Mission Design in the Circular Restricted Three-Body ProblemPurdue UniversityWest LafayetteM.S. ThesisGoogle Scholar
  11. McInnes, C.R., Simmons, J. F. L. 1992a‘Solar Sail Halo orbit I: Heliocentric Case’J. Spacecraft Rockets29466471ADSGoogle Scholar
  12. McInnes, C. R., Simmons, J. F. L. 1992b‘Solar Sail Halo orbit I: Geocentric Case’J. Spacecraft Rockets29472479ADSGoogle Scholar
  13. McInnes, C. R. 1993‘Solar sail trajectories at the lunar L2 lagrange point’J. Spacecraft Rockets30782784Google Scholar
  14. McInnes, C. R., Mcdonald, A. J. C., Simmons, J. F. L., MacDonald, E. W. 1994‘Solar sail parking in restricted three-body system’J. Guidance, Control, Dynamics17399406ADSGoogle Scholar
  15. McInnes, C. R. 1999Solar Sailing: Technology, Dynamics and Mission ApplicationsSpringer-VerlagLondonGoogle Scholar
  16. Richardson, D. L. 1980‘Analytic construction of periodic orbits about the collinear points’Celest. Mech.22241253ADSMATHGoogle Scholar
  17. Szebehely, V. 1967Theory of Orbits: The Restricted Problem of Three BodiesAcademic PressNew YorkGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.School of AerospaceTsinghua UniversityBeijingChina
  2. 2.University of StrathclydeScotlandUK

Personalised recommendations