Skip to main content
Log in

Abstract

We reexamine the classical virial theorem for bounded orbits of arbitrary autonomous Hamiltonian systems possessing both regular and chaotic orbits. New and useful forms of the virial theorem are obtained for natural Hamiltonian flows of arbitrary dimension. A discrete virial theorem is derived for invariant circles and periodic orbits of natural symplectic maps. A weak and a strong form of the virial theorem are proven for both flows and maps. While the Birkhoff Ergodic Theorem guarantees the existence of the relevant time averages for both regular and chaotic orbits, the convergence is very rapid for the former and extremely slow for the latter. This circumstance leads to a simple and efficient measure of chaoticity. The results are applied to several problems of current physical interest, including the Hénon–Heiles system, weak chaos in the standard map, and a 4D Froeschlé map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • V. I. Arnold (1989) Mathematical Methods of Classical Mechanics EditionNumber2 Springer New York

    Google Scholar 

  • Atkins, P. W. 1983 Molecular Quantum Mechanics 2nd ed. Oxford.

  • J. Binney S. Tremaine (1987) Galactic Dynamics Princeton University Press Princeton

    Google Scholar 

  • G. Birkhoff (1931) ArticleTitle‘Proof of the Ergodic Theorem’ Proc. Nat. Acad. Sci. USA 17 656

    Google Scholar 

  • Blümel, R. and Reinhardt, W. P.: 1997, Chaos in Atomic Physics, Cambridge.

  • R. J. E. Clausius (1850) ArticleTitleÜber die Bewegende Kraft der Wärme’ Ann. der Physik und Chemie 79 368

    Google Scholar 

  • G. Contopoulos N. Voglis (1977) ArticleTitle‘A Fast Method for Distinquishing Between Order and Chaotic Orbits’ Astron. Astrophys 317 73

    Google Scholar 

  • A. J. Dragt (1979) ArticleTitle‘A Method of Transfer Maps for Linear and Nonlinear Beam Elements’ IEEE Trans. Nucl. Sci NS-26 601

    Google Scholar 

  • H. R. Dullin J. D. Meiss (2000) ArticleTitle‘Generalized Hnon Maps: the Cubic Polynomial Diffeomorphisms of the Plane’ Physica D143 265

    Google Scholar 

  • H.S. Dumas J. Laskar (1993) ArticleTitle‘Global Dynamics and Long-time Stability in Hamiltonian Systems via Numerical Frequency Analysis’ Phys. Rev. Lett 70 2975 Occurrence Handle10.1103/PhysRevLett.70.2975 Occurrence Handle10053744

    Article  PubMed  Google Scholar 

  • C. Froeschlé (1984) ArticleTitle‘The Lyapunov Exponents – Applications to Celestial Mechanics’ Celest. Mech 34 95 Occurrence Handle10.1007/BF01235793

    Article  Google Scholar 

  • H. Goldstein C. Poole J. Safko (1989) Classical Mechanics Addison-Wesley New York

    Google Scholar 

  • G. A. Gottwald I. Melbourne (2004) ArticleTitle‘A New Test for Chaos in Deterministic Systems’ Proc. Roy. Soc 460 603 Occurrence Handle10.1098/rspa.2003.1183

    Article  Google Scholar 

  • M. Hénon C. Heiles (1964) ArticleTitleApplicability of the Third Integral of Motion: Some Numerical Experiments’ Astron. J 69 73 Occurrence Handle10.1086/109234

    Article  Google Scholar 

  • M. Hénon (1969) ArticleTitle‘Numerical Study of Quadratic Area-Preserving Mappings’ Q. Appl. Math 27 291

    Google Scholar 

  • J. E. Howard A. J. Lichtenberg M. A. Lieberman (1986) ArticleTitle‘Four-Dimensional Mapping Model for Two-Frequency ECRH’ Physica 20D 259

    Google Scholar 

  • J. E. Howard (1999) ArticleTitle‘Stability of Relative Equilibria in Arbitrary Axisymmetric Gravitational and Magnetic Fields’ Celest. Mech. Dyn. Astron 74 19 Occurrence Handle10.1023/A:1008388105585

    Article  Google Scholar 

  • J. E. Howard H. R. Dullin (2001) ArticleTitle‘Spectral Stability of Natural Maps’ Phys. Lett A88 225

    Google Scholar 

  • J. Laskar C. Froeschlé A. Celletti (1992) ArticleTitle‘The Measure of Chaos by the Numerical Analysis of the Fundamental. Frequencies Application to the Standard Mapping’ Physica D56 253

    Google Scholar 

  • J. Laskar (1993) ArticleTitle‘Frequency Analysis for Multi-dimensional Systems Global Dynamics and Diffusion’ Physica D67 257

    Google Scholar 

  • E. Lega C. Froeschlé (1997) ‘Fast Lyapunov Indicators. Comparison with other Chaos Indicators. Application to Two and Four Dimensional Maps’ R. Dvorak J. Henrard (Eds) The Dynamical Behavior of our Planetary System Kluwer Dordrecht

    Google Scholar 

  • A. J. Lichtenberg M. A. Lieberman (1992) Regular and Chaotic Dynamics Springer New York

    Google Scholar 

  • J. D. Meiss (1994) ArticleTitle‘Transient Measures in The Standard Map’ Physica D74 254

    Google Scholar 

  • Murray, C. D. and Dermott, S. F. 1999, Solar System Dynamics Cambridge.

  • E. N. Parker (1954) ArticleTitle‘Tensor Virial Equations’ Phys. Rev 96 1686 Occurrence Handle10.1103/PhysRev.96.1686

    Article  Google Scholar 

  • R. K. Pathria (1996) Statistical Mechanics Butterworth and Heineman Oxford

    Google Scholar 

  • C. Robinson (1998) Dynamical Systems CRC Press New York

    Google Scholar 

  • Zs. Sándor B. Erdi C. Efthymiopoulos (2000) ArticleTitle‘The Phase Space Structure Around L4 in the Restricted Three-Body Problem’ Celest. Mech. Dynam. Astron 78 113 Occurrence Handle10.1023/A:1011112228708

    Article  Google Scholar 

  • V. D. Shafranov (1966) Reviews of Plasma Physics Consultants Bureau New York

    Google Scholar 

  • Ch. Skokos (2001) ArticleTitle‘Alignment Indices: A New, Simple Method for Determining the Ordered or Chaotic Nature of Orbits’ J. Phys A34 10029

    Google Scholar 

  • A. Wolf J. B. Swift H. L. Swinney J. A. Vastano (1985) ArticleTitle‘Determining Lyapunov Exponents from a Time Series’ Physica 16D 285

    Google Scholar 

  • G. M. Zaslavskii R. Z. Sagdeev D. A. Usikov A. A. Chernikov A. R. Sagdeev (1992) Chaos and Quasi-Regular Patterns Cambridge University Press Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Howard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, J.E. Discrete Virial Theorem. Celestial Mech Dyn Astr 92, 219–241 (2005). https://doi.org/10.1007/s10569-005-2578-2

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-005-2578-2

Keywords

Navigation