Advertisement

Discrete Virial Theorem

  • J. E. Howard
Article

Abstract

We reexamine the classical virial theorem for bounded orbits of arbitrary autonomous Hamiltonian systems possessing both regular and chaotic orbits. New and useful forms of the virial theorem are obtained for natural Hamiltonian flows of arbitrary dimension. A discrete virial theorem is derived for invariant circles and periodic orbits of natural symplectic maps. A weak and a strong form of the virial theorem are proven for both flows and maps. While the Birkhoff Ergodic Theorem guarantees the existence of the relevant time averages for both regular and chaotic orbits, the convergence is very rapid for the former and extremely slow for the latter. This circumstance leads to a simple and efficient measure of chaoticity. The results are applied to several problems of current physical interest, including the Hénon–Heiles system, weak chaos in the standard map, and a 4D Froeschlé map.

Keywords

chaos Hamiltonian systems symplectic maps virial theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V. I. 1989Mathematical Methods of Classical Mechanics2SpringerNew YorkGoogle Scholar
  2. Atkins, P. W. 1983 Molecular Quantum Mechanics 2nd ed. Oxford.Google Scholar
  3. Binney, J., Tremaine, S. 1987Galactic DynamicsPrinceton University PressPrincetonGoogle Scholar
  4. Birkhoff, G. 1931‘Proof of the Ergodic Theorem’Proc. Nat. Acad. Sci. USA17656Google Scholar
  5. Blümel, R. and Reinhardt, W. P.: 1997, Chaos in Atomic Physics, Cambridge.Google Scholar
  6. Clausius, R. J. E. 1850Über die Bewegende Kraft der Wärme’Ann. der Physik und Chemie79368Google Scholar
  7. Contopoulos, G., Voglis, N. 1977‘A Fast Method for Distinquishing Between Order and Chaotic Orbits’Astron. Astrophys31773Google Scholar
  8. Dragt, A. J. 1979‘A Method of Transfer Maps for Linear and Nonlinear Beam Elements’IEEE Trans. Nucl. SciNS-26601Google Scholar
  9. Dullin, H. R., Meiss, J. D. 2000‘Generalized Hnon Maps: the Cubic Polynomial Diffeomorphisms of the Plane’PhysicaD143265Google Scholar
  10. Dumas, H.S., Laskar, J. 1993‘Global Dynamics and Long-time Stability in Hamiltonian Systems via Numerical Frequency Analysis’Phys. Rev. Lett702975CrossRefPubMedGoogle Scholar
  11. Froeschlé, C. 1984‘The Lyapunov Exponents – Applications to Celestial Mechanics’Celest. Mech3495CrossRefGoogle Scholar
  12. Goldstein, H., Poole, C., Safko, J. 1989Classical MechanicsAddison-WesleyNew YorkGoogle Scholar
  13. Gottwald, G. A., Melbourne, I. 2004‘A New Test for Chaos in Deterministic Systems’Proc. Roy. Soc460603CrossRefGoogle Scholar
  14. Hénon, M., Heiles, C. 1964Applicability of the Third Integral of Motion: Some Numerical Experiments’Astron. J6973CrossRefGoogle Scholar
  15. Hénon, M. 1969‘Numerical Study of Quadratic Area-Preserving Mappings’Q. Appl. Math27291Google Scholar
  16. Howard, J. E., Lichtenberg, A. J., Lieberman, M. A. 1986‘Four-Dimensional Mapping Model for Two-Frequency ECRH’Physica20D259Google Scholar
  17. Howard, J. E. 1999‘Stability of Relative Equilibria in Arbitrary Axisymmetric Gravitational and Magnetic Fields’Celest. Mech. Dyn. Astron7419CrossRefGoogle Scholar
  18. Howard, J. E., Dullin, H. R. 2001‘Spectral Stability of Natural Maps’Phys. LettA88225Google Scholar
  19. Laskar, J., Froeschlé, C., Celletti, A. 1992‘The Measure of Chaos by the Numerical Analysis of the Fundamental. Frequencies Application to the Standard Mapping’PhysicaD56253Google Scholar
  20. Laskar, J. 1993‘Frequency Analysis for Multi-dimensional Systems Global Dynamics and Diffusion’PhysicaD67257Google Scholar
  21. Lega, E., Froeschlé, C. 1997‘Fast Lyapunov Indicators. Comparison with other Chaos Indicators. Application to Two and Four Dimensional Maps’Dvorak, R.Henrard, J. eds. The Dynamical Behavior of our Planetary SystemKluwerDordrechtGoogle Scholar
  22. Lichtenberg, A. J., Lieberman, M. A. 1992Regular and Chaotic DynamicsSpringerNew YorkGoogle Scholar
  23. Meiss, J. D. 1994‘Transient Measures in The Standard Map’PhysicaD74254Google Scholar
  24. Murray, C. D. and Dermott, S. F. 1999, Solar System Dynamics Cambridge.Google Scholar
  25. Parker, E. N. 1954‘Tensor Virial Equations’Phys. Rev961686CrossRefGoogle Scholar
  26. Pathria, R. K. 1996Statistical MechanicsButterworth and HeinemanOxfordGoogle Scholar
  27. Robinson, C. 1998Dynamical SystemsCRC PressNew YorkGoogle Scholar
  28. Sándor, Zs., Erdi, B., Efthymiopoulos, C. 2000‘The Phase Space Structure Around L4 in the Restricted Three-Body Problem’Celest. Mech. Dynam. Astron78113CrossRefGoogle Scholar
  29. Shafranov, V. D. 1966Reviews of Plasma PhysicsConsultants BureauNew YorkGoogle Scholar
  30. Skokos, Ch. 2001‘Alignment Indices: A New, Simple Method for Determining the Ordered or Chaotic Nature of Orbits’J. PhysA3410029Google Scholar
  31. Wolf, A., Swift, J. B., Swinney, H. L., Vastano, J. A. 1985‘Determining Lyapunov Exponents from a Time Series’Physica16D285Google Scholar
  32. Zaslavskii, G. M., Sagdeev, R. Z., Usikov, D. A., Chernikov, A. A., Sagdeev, A. R. 1992Chaos and Quasi-Regular PatternsCambridge University PressCambridgeGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations