Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 93, Issue 1–4, pp 229–262 | Cite as

Comparison between Different Models of Galactic Tidal Effects on Cometary Orbits

  • Marc Fouchard
  • Christiane Froeschlé
  • John J. Matese
  • Giovanni Valsecchi
Article

Abstract

Different models of the action of the galactic tide are compared. Each model is a substitute for direct numerical integrations allowing a drastic decrease of the computation time. The models are built using two different techniques, (i) averaging of the fast variable (the mean anomaly) over one cometary period and (ii) fixing the comet in its aphelion direction. Moreover, we consider two different formalisms (Lagrangian and Hamiltonian) and also two different sets of variables. As expected, we find that the model results are independent of the formalism and the set of variables considered, and are highly accurate, whereas mathematical technique leads to poor results. In order to further reduce the computation time, mappings are built from the development of the solution of the models. We show that for these mappings, the set of variables giving the most accurate results is strongly dependent on the cometary eccentricity, e, and semimajor axis, a.

Keywords

galactic tidal effects long-period comets Oort cloud 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiter, S., Dybczynski, P. A., Elipe, A. 1996‘The action of the galactic disk on the Oort cloud comets. Qualitative study’A & A.315618624ADSGoogle Scholar
  2. Byl, J. 1986‘The effect of the Galaxy on cometary orbits’Earth Moon Planets.36263273ADSCrossRefGoogle Scholar
  3. Everhart, E.: 1985, ‘An efficient integrator that uses Gauss-Radau spacings’, In: A. Carusi and G. B. Valsecchi (eds.), Dynamics of Comets: Their Origin and Evolution, Proceedings of the IAU Colloq. 83, Reidel, Dordrecht, p. 185.Google Scholar
  4. Fouchard, M. 2004‘New fast models of the galactic tide’MNRAS349347356CrossRefADSGoogle Scholar
  5. Gradshteyn, I. S., Rhyzhik, I. M. 1965Jeffrey, A. eds. Table of Integrals, Series and ProductsAcadamic pressNew York904917Google Scholar
  6. Heisler, J., Tremaine, S. 1986‘The influence of the galactic tidal field on the Oort comet cloud’Icarus.651326CrossRefADSGoogle Scholar
  7. Levison, H., Dones, L., Duncan, M. J. 2001‘The origin of Halley-type comets: probing the inner Oort cloud’Astron. J.12122532267ADSGoogle Scholar
  8. Matese, J. J., Lissauer, J. J. 2004‘Perihelion evolution of observed new comets implies the dominance of the galactic tide in making Oort cloud comets discernable’Icarus.170508513CrossRefADSGoogle Scholar
  9. Matese, J. J., Whitman, P. G. 1989‘The galactic disk tidal field and the nonrandom distribution of observed Oort cloud comets’Icarus.82389401CrossRefADSGoogle Scholar
  10. Matese, J. J., Whitman, P. G. 1992‘A model of the galactic tidal interaction with the Oort comet cloud’Celest. Mech. Dynam. Astron.541335CrossRefADSGoogle Scholar
  11. Oort, J. H. 1950‘The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin’Bull. Astron. Inst. Neth.1191110ADSGoogle Scholar
  12. Roy, A. E. 1988Orbital Motion3Institute of Physics PublishingBristol and PhiladelphiaMATHGoogle Scholar
  13. Wiegert, P., Tremaine, S. 1999‘The Evolution of Long-Period Comets’Icarus.13784121CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Marc Fouchard
    • 1
    • 2
    • 3
  • Christiane Froeschlé
    • 1
  • John J. Matese
    • 4
  • Giovanni Valsecchi
    • 3
  1. 1.Observatoire de la Côte d’AzurUMR 6202Nice cedex 4France
  2. 2.Observatoire de ParisSYRTEParisFrance
  3. 3.INAF-IASFRomaItaly
  4. 4.Department of PhysicsUniversity of Louisiana at LafayetteLafayetteU.S.A

Personalised recommendations