Stability of Co-Orbital Motion in Exoplanetary Systems



The stability of co-orbital motions is investigated in such exoplanetary systems, where the only known giant planet either moves fully in the habitable zone, or leaves it for some part of its orbit. If the regions around the triangular Lagrangian points are stable, they are possible places for smaller Trojan-like planets. We have determined the nonlinear stability regions around the Lagrangian point L4 of nine exoplanetary systems in the model of the elliptic restricted three-body problem by using the method of the relative Lyapunov indicators. According to our results, all systems could possess small Trojan-like planets. Several features of the stability regions are also discussed. Finally, the size of the stability region around L4 in the elliptic restricted three-body problem is determined as a function of the mass parameter and eccentricity.


co-orbital motion exoplanets nonlinear stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caton, D. B., Davis, S. A., Kluttz, K. A., Stamilio, R. J., Wohlman, K. D. 2001BAAS33890Google Scholar
  2. Davis, S. A., Caton, D. B., Kluttz, K. A., Wohlman, K. D., Stamilio, R. J., Hix, K. B. 2001BAAS331303Google Scholar
  3. Dvorak, R., Pilat-Lohinger, E., Schwarz, R., Freistetter, F. 2004Astron. Astrophys.426L37L40CrossRefGoogle Scholar
  4. Györgyey, J. 1985Celest. Mech.36281CrossRefGoogle Scholar
  5. Laughlin, G., Chambers, J. E. 2002Astron. J.124592CrossRefGoogle Scholar
  6. Lohinger, E., Dvorak, R. 1993Astron. Astrophys.280683Google Scholar
  7. Nauenberg, M. 2002Astron J.1242332CrossRefGoogle Scholar
  8. Novak, G. S. 2002BAAS34939Google Scholar
  9. Menou, K., Tabachnik, S. 2003ApJ583473CrossRefGoogle Scholar
  10. Namouni, F., Murray, C. D. 2000Celest Mech. Dynam. Astron.76131CrossRefGoogle Scholar
  11. Sándor, Zs., Érdi, B., Efthymiopoulos, C. 2000Celest. Mech. Dynam. Astron.78113CrossRefGoogle Scholar
  12. Sándor, Zs., Érdi, B., Murray, C. D. 2002Celest Mech. Dynam. Astron.84355CrossRefGoogle Scholar
  13. Sándor, Zs., Érdi, B. 2003Celest Mech. Dynam. Astron.86301CrossRefGoogle Scholar
  14. Sándor, Zs., Érdi, B., Széll, A., Funk, B. 2004Celest Mech. Dynam. Astron.90127CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of AstronomyEötvös UniversityBudapestHungary

Personalised recommendations