Ion transport mechanisms for smoke inhalation–injured airway epithelial barrier

Abstract

Smoke inhalation injury is the leading cause of death in firefighters and victims. Inhaled hot air and toxic smoke are the predominant hazards to the respiratory epithelium. We aimed to analyze the effects of thermal stress and smoke aldehyde on the permeability of the airway epithelial barrier. Transepithelial resistance (RTE) and short-circuit current (ISC) of mouse tracheal epithelial monolayers were digitized by an Ussing chamber setup. Zonula occludens-1 tight junctions were visualized under confocal microscopy. A cell viability test and fluorescein isothiocyanate-dextran assay were performed. Thermal stress (40 °C) decreased RTE in a two-phase manner. Meanwhile, thermal stress increased ISC followed by its decline. Na+ depletion, amiloride (an inhibitor for epithelial Na+ channels [ENaCs]), ouabain (a blocker for Na+/K+-ATPase), and CFTRinh-172 (a blocker of cystic fibrosis transmembrane regulator [CFTR]) altered the responses of RTE and ISC to thermal stress. Steady-state 40 °C increased activity of ENaCs, Na+/K+-ATPase, and CFTR. Acrolein, one of the main oxidative unsaturated aldehydes in fire smoke, eliminated RTE and ISC. Na+ depletion, amiloride, ouabain, and CFTRinh-172 suppressed acrolein-sensitive ISC, but showed activating effects on acrolein-sensitive RTE. Thermal stress or acrolein disrupted zonula occludens-1 tight junctions, increased fluorescein isothiocyanate-dextran permeability but did not cause cell death or detachment. The synergistic effects of thermal stress and acrolein exacerbated the damage to monolayers. In conclusion, the paracellular pathway mediated by the tight junctions and the transcellular pathway mediated by active and passive ion transport pathways contribute to impairment of the airway epithelial barrier caused by thermal stress and acrolein.

Thermal stress and acrolein are two essential determinants for smoke inhalation injury, impairing airway epithelial barrier.

Transcellular ion transport pathways via the ENaC, CFTR, and Na/K-ATPase are interrupted by both thermal stress and acrolein, one of the most potent smoke toxins.

Heat and acrolein damage the integrity of the airway epithelium through suppressing and relocating the tight junctions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

ENaCs:

Epithelial Na+ channels

CFTR:

Cystic fibrosis transmembrane regulator

R TE :

Transepithelial resistance

I SC :

Short-circuit current

MTE:

Mouse tracheal epithelial

FITC:

Fluorescein isothiocyanate

HBE:

Human bronchial epithelial

DMSO:

Dimethyl sulfoxide

ZO-1:

Zonula occludens-1

P1:

Phase 1

P2:

Phase 2

ASI:

Amiloride-sensitive ISC

KCs:

K+ channels

ROS:

Reactive oxygen species

CaCCs:

Ca2+-activated Cl channels

NKCC:

Na+/K+/2Cl

MAPK:

Mitogen-activated protein kinase

References

  1. Alexander NS, Blount A, Zhang S, Skinner D, Hicks SB, Chestnut M, et al. Cystic fibrosis transmembrane conductance regulator modulation by the tobacco smoke toxin acrolein. Laryngoscope. 2012;122:1193–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alwis KU, de Castro BR, Morrow JC, Blount BC. Acrolein exposure in U.S. tobacco smokers and non-tobacco users: NHANES 2005-2006. Environ Health Perspect. 2015;123:1302–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Anthony TR, Joggerst P, James L, Burgess JL, Leonard SS, Shogren ES. Method development study for APR cartridge evaluation in fire overhaul exposures. Ann Occup Hyg. 2007;51:703–16.

    CAS  PubMed  Google Scholar 

  4. Bein K, Leikauf GD. Acrolein - a pulmonary hazard. Mol Nutr Food Res. 2011;55:1342–60.

    CAS  PubMed  Google Scholar 

  5. Borchers MT, Wert SE, Leikauf GD. Acrolein-induced MUC5ac expression in rat airways. Am J Phys. 1998;274:L573–81.

    CAS  Google Scholar 

  6. Burcham PC, Raso A, Thompson CA. Intermediate filament carbonylation during acute acrolein toxicity in A549 lung cells: functional consequences, chaperone redistribution, and protection by bisulfite. Antioxid Redox Signal. 2010;12(3):337–47.

    CAS  PubMed  Google Scholar 

  7. Chang J, Ding Y, Zhou Z, Nie HG, Ji HL. Transepithelial fluid and salt re-absorption regulated by cGK2 signals. Int J Mol Sci. 2018;19:E881.

    PubMed  Google Scholar 

  8. Chen Z, Zhao R, Zhao M, Liang X, Bhattarai D, Dhiman R, et al. Regulation of epithelial sodium channels in urokinase plasminogen activator deficiency. Am J Phys Lung Cell Mol Phys. 2014;307:L609–17.

    CAS  Google Scholar 

  9. Cui Y, Li H, Wu S, Zhao R, Du D, Ding Y, et al. Formaldehyde impairs transepithelial sodium transport. Sci Rep. 2016;6:35857.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Davidson DJ, Kilanowski FM, Randell SH, Sheppard DN, Dorin JR. A primary culture model of differentiated murine tracheal epithelium. Am J Phys Lung Cell Mol Phys. 2000;279(4):L766–78.

    CAS  Google Scholar 

  11. Dong ZW, Chen J, Ruan YC, Zhou T, Chen Y, Chen Y, et al. CFTR-regulated MAPK/NF-kappaB signaling in pulmonary inflammation in thermal inhalation injury. Sci Rep. 2015;5:15946.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dubick MA, Carden SC, Jordan BS, Langlinais PC, Mozingo DW. Indices of antioxidant status in rats subjected to wood smoke inhalation and/or thermal injury. Toxicology. 2002;176(1–2):145–57.

    CAS  PubMed  Google Scholar 

  13. Dunayevich P, Baltanas R, Clemente JA, Couto A, Sapochnik D, Vasen G, et al. Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci Rep. 2018;8(1):15168.

    PubMed  PubMed Central  Google Scholar 

  14. Faroon O, Roney N, Taylor J, Ashizawa A, Lumpkin MH, Plewak DJ. Acrolein environmental levels and potential for human exposure. Toxicol Ind Health. 2008;24(8):543–64.

    CAS  PubMed  Google Scholar 

  15. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol. 1963;17:375–412. https://doi.org/10.1083/jcb.17.2.375.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Fitzgerald KT, Flood AA. Smoke inhalation. Clin Tech Small Anim Prac. 2006;21:205–14.

    Google Scholar 

  17. Flynn AN, Itani OA, Moninger TO, Welsh MJ. Acute regulation of tight junction ion selectivity in human airway epithelia. Proc Natl Acad Sci U S A. 2009;106:3591–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuller CM, Benos DJ. CFTR! Am J Phys. 1992;263:C267–86.

    CAS  Google Scholar 

  19. Gillie DJ, Pace AJ, Coakley RJ, Koller BH, Barker PM. Liquid and ion transport by fetal airway and lung epithelia of mice deficient in sodium-potassium-2-chloride transporter. Am J Respir Cell Mol Biol. 2001;25(1):14–20.

    CAS  PubMed  Google Scholar 

  20. Hales CA, Barkin PW, Jung W, Trautman E, Lamborghini D, Herrig N, et al. Synthetic smoke with acrolein but not HCl produces pulmonary edema. J Appl Physiol (1985). 1988;64:1121–33.

    CAS  Google Scholar 

  21. Han DY, Nie HG, Gu X, Nayak RC, Su XF, Fu J, et al. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport. Respir Res. 2010;11:65.

    PubMed  PubMed Central  Google Scholar 

  22. Haponik EF. Clinical smoke inhalation injury: pulmonary effects. Occup Med. 1993;8:430–68.

    CAS  PubMed  Google Scholar 

  23. Hermann A, Sitdikova GF, Weiger TM. Oxidative stress and maxi calcium-activated potassium (BK) channels. Biomolecules. 2015;5(3):1870–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Horani A, Dickinson JD, Brody SL. Applications of mouse airway epithelial cell culture for asthma research. Methods Mol Biol. 2013;1032:91–107.

    CAS  PubMed  Google Scholar 

  25. Hou Y, Cui Y, Zhou Z, Liu H, Zhang H, Ding Y, et al. Upregulation of the WNK4 signaling pathway inhibits epithelial sodium channels of mouse tracheal epithelial cells after influenza A infection. Front Pharmacol. 2019;10:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Howard M, Roux J, Iles KE, Miyazawa B, Christiaans S, Anjum N, et al. Activation of the heat shock response attenuates the interleukin 1beta-mediated inhibition of the amiloride-sensitive alveolar epithelial ion transport. Shock. 2013;39:189–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang W, Zhao H, Dong H, Wu Y, Yao L, Zou F, et al. High-mobility group box 1 impairs airway epithelial barrier function through the activation of the RAGE/ERK pathway. Int J Mol Med. 2016;37(5):1189–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kis A, Krick S, Baumlin N, Salathe M. Airway hydration, apical K(+) secretion, and the large-conductance, Ca(2+)-activated and voltage-dependent potassium (BK) channel. Ann Am Thorac Soc. 2016;13(Suppl 2):S163–8.

    PubMed  PubMed Central  Google Scholar 

  29. Kuninaka S, Ichinose Y, Koja K, Toh Y. Suppression of manganese superoxide dismutase augments sensitivity to radiation, hyperthermia and doxorubicin in colon cancer cell lines by inducing apoptosis. Br J Cancer. 2000;83(7):928–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuroishi S, Suda T, Fujisawa T, Ide K, Inui N, Nakamura Y, et al. Epithelial-mesenchymal transition induced by transforming growth factor-beta1 in mouse tracheal epithelial cells. Respirology. 2009;14:828–37.

    PubMed  Google Scholar 

  31. Lee KE, Jee HM, Hong JY, Kim MN, Oh MS, Kim YS, et al. German cockroach extract induces matrix metalloproteinase-1 expression, leading to tight junction disruption in human airway epithelial cells. Yunsei Med J. 2018;59(10):1222–31.

    CAS  Google Scholar 

  32. Li JJ, Oberley LW. Overexpression of manganese-containing superoxide dismutase confers resistance to the cytotoxicity of tumor necrosis factor alpha and/or hyperthermia. Cancer Res. 1997;57(10):1991–8.

    CAS  PubMed  Google Scholar 

  33. Li Y, Chang J, Cui Y, Zhao R, Ding Y, Hou Y, et al. Novel mechanisms for crotonaldehyde-induced lung edema. Oncotarget. 2017;8:83509–22.

    PubMed  PubMed Central  Google Scholar 

  34. Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Phys Lung Cell Mol Phys. 2017;313(5):L845–l58.

    Google Scholar 

  35. Manzanares D, Gonzalez C, Ivonnet P, Chen RS, Valencia-Gattas M, Conner GE, et al. Functional apical large conductance, Ca2+-activated, and voltage-dependent K+ channels are required for maintenance of airway surface liquid volume. J Biol Chem. 2011;286(22):19830–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Matsuno T, Ito Y, Ohashi T, Morise M, Takeda N, Shimokata K, et al. Dual pathway activated by tert-butyl hydroperoxide in human airway anion secretion. J Pharmacol Exp Ther. 2008;327(2):453–64.

    CAS  PubMed  Google Scholar 

  37. Meacher DM, Menzel DB. Glutathione depletion in lung cells by low-molecular-weight aldehydes. Cell Biol Toxicol. 1999;15:163–71.

    CAS  PubMed  Google Scholar 

  38. Nie HG, Chen L, Han DY, Li J, Song WF, Wei SP, et al. Regulation of epithelial sodium channels by cGMP/PKGII. J Physiol. 2009;587:2663–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Omar RA, Yano S, Kikkawa Y. Antioxidant enzymes and survival of normal and simian virus 40-transformed mouse embryo cells after hyperthermia. Cancer Res. 1987;47(13):3473–6.

    CAS  PubMed  Google Scholar 

  40. Reinhardt TE, Ottmar RD. Baseline measurements of smoke exposure among wildland firefighters. J Occup Environ Hyg. 2004;1:593–606.

    CAS  PubMed  Google Scholar 

  41. Romet-Haddad S, Marano F, Blanquart C, Baeza-Squiban A. Tracheal epithelium in culture: a model for toxicity testing of inhaled molecules. Cell Biol Toxicol. 1992;8:141–50.

    CAS  PubMed  Google Scholar 

  42. Roux E, Ouedraogo N, Hyvelin JM, Savineau JP, Marthan R. In vitro effect of air pollutants on human bronchi. Cell Biol Toxicol. 2002;18:289–99.

    CAS  PubMed  Google Scholar 

  43. Sailland J, Grosche A, Baumlin N, Dennis JS, Schmid A, Krick S, et al. Role of Smad3 and p38 signalling in cigarette smoke-induced CFTR and BK dysfunction in primary human bronchial airway epithelial cells. Sci Rep. 2017;7(1):10506.

    PubMed  PubMed Central  Google Scholar 

  44. Schreiber R, Ousingsawat J. Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca(2+) and plasma membrane lipid. J Physiol. 2018;596(2):217–29.

    CAS  PubMed  Google Scholar 

  45. Scudieri P, Caci E, Venturini A, Sondo E, Pianigiani G, Marchetti C, et al. Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. J Physiol. 2015;593(17):3829–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev. 1999;79:S23–45.

    CAS  PubMed  Google Scholar 

  47. Stevens JF, Maier CS. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res. 2008;52:7–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tobey NA, Sikka D, Marten E, Caymaz-Bor C, Hosseini SS, Orlando RC. Effect of heat stress on rabbit esophageal epithelium. Am J Phys. 1999;276:G1322–30.

    CAS  Google Scholar 

  49. Tsukita S, Furuse M. Claudin-based barrier in simple and stratified cellular sheets. Curr Opin Cell Biol. 2002;14:531–6.

    CAS  PubMed  Google Scholar 

  50. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 2006;126:741–54.

    CAS  PubMed  Google Scholar 

  51. Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006;68:403–29.

    PubMed  Google Scholar 

  52. Wang X, Adler KB, Erjefalt J, Bai C. Airway epithelial dysfunction in the development of acute lung injury and acute respiratory distress syndrome. Expert Rev Respir Med. 2007;1:149–55.

    CAS  PubMed  Google Scholar 

  53. Wang Y, Bai C, Li K, Adler KB, Wang X. Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir Med. 2008;102:949–55.

    PubMed  Google Scholar 

  54. Wang T, Liu Y, Chen L, Wang X, Hu XR, Feng YL, et al. Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats. Eur Respir J. 2009;33(5):1122–32.

    CAS  PubMed  Google Scholar 

  55. You K, Yang HT, Kym D, Yoon J, Haejun Y, Cho YS, et al. Inhalation injury in burn patients: establishing the link between diagnosis and prognosis. Burns. 2014;40:1470–5.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from the National Institute of Health (NIH HL134828) and the National Natural Science Foundation of China (NSFC 81670010).

Author information

Affiliations

Authors

Contributions

Hong-Long Ji conceived study, designed experiments, edited manuscript, and approved submission. Jianjun Chang, Zaixing Chen, and Hong-Guang Nie performed experiments, analyzed data, and plotted graphs. Jianjun Chang, Runzhen Zhao, Hong-Guang Nie, and Zaixing Chen prepared manuscript.

Corresponding authors

Correspondence to Hong-Guang Nie or Hong-Long Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3700 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Chen, Z., Zhao, R. et al. Ion transport mechanisms for smoke inhalation–injured airway epithelial barrier. Cell Biol Toxicol (2020). https://doi.org/10.1007/s10565-020-09545-1

Download citation

Keywords

  • Thermal stress
  • Acrolein
  • Tracheal epithelial monolayers
  • Ion transport
  • Tight junctions