Cell Biology and Toxicology

, Volume 33, Issue 6, pp 527–537 | Cite as

FoxM1-mediated RFC5 expression promotes temozolomide resistance

  • Wan-xin Peng
  • Xiu Han
  • Chun-li Zhang
  • Lu Ge
  • Feng-yi Du
  • Jie Jin
  • Ai-hua Gong
Original Article


Although methylguanine-DNA-methyltransferase (MGMT) plays an important role in resistance to temozolomide (TMZ) in glioma, 40% of gliomas with MGMT inactivation are still resistant to TMZ. The underlying mechanism is not clear. Here, we report that forkhead box M1 (FoxM1) transcriptionally activates the expression of DNA repair gene replication factor C5 (RFC5) to promote TMZ resistance in glioma cells independent of MGMT activation. We showed that RFC5 expression is positively correlated with FoxM1 expression in human glioma cells and FoxM1 is able to transcriptionally activate RFC expression by interaction with the RFC5 promoter. Furthermore, knockdown of FoxM1 or RFC5 partially re-sensitizes glioma cells to TMZ. Consistently, thiostrepton, a FoxM1 inhibitor, in combination with TMZ significantly inhibits proliferation and promotes apoptosis in glioma cells. Taken together, these findings suggest that the FoxM1-RFC5 axis may mediate TMZ resistance and thiostrepton may serve as a potential therapeutic agent against TMZ resistance in glioma cells.


Glioma Chemo-resistance FoxM1 RFC5 TMZ 



Forkhead box M1


Methylguanine-DNA methyltransferase




Replication factor C



This work was supported by grants from the Natural Science Foundation of China (81372718 to A.G.; 31100964 to W.P.), Postdoctoral Science Foundation Funded Project by Jiangsu province (1402102C to W.P.), and the Specialized Research Fund for Senior Personnel Program of Jiangsu University (10JDG45 to W.P.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of the interest.


  1. Annovazzi L, Caldera V, Mellai M, Riganti C, Battaglia L, Chirio D, Melcarne A, Schiffer D. The DNA damage/repair cascade in glioblastoma cell lines after chemotherapeutic agent treatment. Int J Oncol. 2015;46:2299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beckwith W, Mcalear MA. Allele-specific interactions between the yeast RFC1 and RFC5 genes suggest a basis for RFC subunit-subunit interactions. Mol Gen Genet. 2000;264:378–91.CrossRefPubMedGoogle Scholar
  3. Castro GN, Cayado-Gutierrez N, Zoppino FC, Fanelli MA, Cuello-Carrion FD, Sottile M, Nadin SB, Ciocca DR. Effects of temozolomide (TMZ) on the expression and interaction of heat shock proteins (HSPs) and DNA repair proteins in human malignant glioma cells. Cell Stress Chaperones. 2015;20:253–65.CrossRefPubMedGoogle Scholar
  4. Erice O, Smith MP, White R, Goicoechea I, Barriuso J, Jones C, Margison GP, Acosta JC, Wellbrock C, Arozarena I. MGMT expression predicts PARP-mediated resistance to temozolomide. Mol Cancer Ther. 2015;14:1236–46.CrossRefPubMedGoogle Scholar
  5. Gaspar N, Marshall L, Perryman L, Bax DA, Little SE, Viana-Pereira M, Sharp SY, Vassal G, Pearson AD, Reis RM, Hargrave D, Workman P, Jones C. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res. 2010;70:9243–52.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Goellner EM, Grimme B, Brown AR, Lin YC, Wang XH, Sugrue KF, Mitchell L, Trivedi RN, Tang JB, SOBOL RW. Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. Cancer Res. 2011;71:2308–17.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gong AH, Wei P, Zhang S, Yao J, Yuan Y, Zhou AD, Lang FF, Heimberger AB, Rao G, Huang S. FoxM1 drives a feed-forward STAT3-activation signaling loop that promotes the self-renewal and tumorigenicity of glioblastoma stem-like cells. Cancer Res. 2015;75:2337–48.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Halasi M, Gartel AL. Targeting FOXM1 in cancer. Biochem Pharmacol. 2013;85:644–52.CrossRefPubMedGoogle Scholar
  9. Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem. 2011;3:725–31.CrossRefPubMedGoogle Scholar
  10. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26:4189–99.CrossRefPubMedGoogle Scholar
  11. Hu CJ, Wang B, Tang B, Chen BJ, Xiao YF, Qin Y, Yong X, Luo G, Zhang JW, Zhang D, Li S, He F, Yang SM. The FOXM1-induced resistance to oxaliplatin is partially mediated by its novel target gene Mcl-1 in gastric cancer cells. Biochim Biophys Acta. 2015;1849:290–9.CrossRefPubMedGoogle Scholar
  12. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jiang G, Li LT, Xin Y, Zhang L, Liu YQZ, Heng JN. Strategies to improve the killing of tumors using temozolomide: targeting the DNA repair protein MGMT. Curr Med Chem. 2012;19:3886–92.CrossRefPubMedGoogle Scholar
  14. Khongkow P, Karunarathna U, Khongkow M, Gong C, Gomes AR, Yague E, Monteiro LJ, Kongsema M, Zona S, Man EP, Tsang JW, Coombes RC, Wu KJ, Khoo US, Medema RH, Freire R, Lam EW. FOXM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin resistance. Oncogene. 2014;33:4144–55.CrossRefPubMedGoogle Scholar
  15. Koo CY, Muir KW, Lam EW. FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta. 2012;1819:28–37.CrossRefPubMedGoogle Scholar
  16. Kwok JM, Peck B, Monteiro LJ, Schwenen HD, Millour J, Coombes RC, Myatt SS, Lam EW. FOXM1 confers acquired cisplatin resistance in breast cancer cells. Mol Cancer Res. 2010;8:24–34.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–17.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lee JW, Houtchens M, Hochberg F, Price B, Cunnane M, Pfannl R, Maccollin M. Glioblastoma multiforme presenting as bilateral internal auditory canal tumors. J Neurol. 2006;253:522–4.CrossRefPubMedGoogle Scholar
  19. Naiki T, Shimomura T, Kondo T, Matsumoto K, Sugimoto K. Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae. Mol Cell Biol. 2000;20:5888–96.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nestal DM, Delbue D, Silva KL, Robaina MC, Khongkow P, GOMES AR, Zona S, Crocamo S, Mencalha AL, Magalhaes LM, Lam EW, Maia RC. FOXM1 targets XIAP and Survivin to modulate breast cancer survival and chemoresistance. Cell Signal. 2015;27:2496–505.CrossRefGoogle Scholar
  21. Perazzoli G, Prados J, Ortiz R, Caba O, Cabeza L, Berdasco M, Gonzalez B, Melguizo C. Temozolomide resistance in glioblastoma cell lines: implication of MGMT, MMR, P-glycoprotein and CD133 expression. PLoS One. 2015;10:e0140131.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, Wick W. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res. 2008;14:2900–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Schar P. Spontaneous DNA damage, genome instability, and cancer—when DNA replication escapes control. Cell. 2001;104:329–32.CrossRefPubMedGoogle Scholar
  24. Sengupta S, Marrinan J, Frishman C, Sampath P. Impact of temozolomide on immune response during malignant glioma chemotherapy. Clin Dev Immunol. 2012;2012:831090.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Shiv M, Cui J, Xie K. Signaling of miRNAs-FOXM1 in cancer and potential targeted therapy. Curr Drug Targets. 2013;14:1192–202.CrossRefGoogle Scholar
  26. Sugimoto K, Shimomura T, Hashimoto K, Araki H, Sugino A, Matsumoto K. Rfc5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast. Proc Natl Acad Sci U S A. 1996;93:7048–52.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sugimoto K, Ando S, Shimomura T, Matsumoto K. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Mol Cell Biol. 1997;17:5905–14.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tang JB, Svilar D, Trivedi RN, Wang XH, Goellner EM, Moore B, Hamilton RL, Banze LA, Brown AR, Sobol RW. N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neuro-Oncology. 2011;13:471–86.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Weinert T. DNA damage checkpoints update: getting molecular. Curr Opin Genet Dev. 1998;8:185–93.CrossRefPubMedGoogle Scholar
  30. Yan W, Zhang W, You G, Zhang J, Han L, Bao Z, Wang Y, Liu Y, Jiang C, Kang C, You Y, Jiang T. Molecular classification of gliomas based on whole genome gene expression: a systematic report of 225 samples from the Chinese Glioma Cooperative Group. Neuro-Oncology. 2012;14:1432–40.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhang N, Wu X, Yang L, Xiao F, Zhang H, Zhou A, Huang Z, Huang S. FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair gene Rad51. Clin Cancer Res. 2012;18:5961–71.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhou J, Wang Y, Wang Y, Yin X, He Y, Chen L, Wang W, Liu T, Di W. FOXM1 modulates cisplatin sensitivity by regulating EXO1 in ovarian cancer. PLoS One. 2014;9:e96989.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zona S, Bella L, Burton MJ, Nestal G, Lam EW. FOXM1: an emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta. 2014;1839:1316–22.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Wan-xin Peng
    • 1
  • Xiu Han
    • 1
  • Chun-li Zhang
    • 1
  • Lu Ge
    • 2
  • Feng-yi Du
    • 1
  • Jie Jin
    • 1
  • Ai-hua Gong
    • 1
  1. 1.School of MedicineJiangsu UniversityZhenjiangChina
  2. 2.Department of GastroenterologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina

Personalised recommendations