Cell Biology and Toxicology

, Volume 30, Issue 6, pp 345–360 | Cite as

Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells

  • Anita Cato
  • Lindsay Celada
  • Esther Caroline Kibakaya
  • Nadia Simmons
  • Margaret M. Whalen
Original Research


Natural killer (NK) cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10–0.5 μM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA.


Hexabromocyclododecane MAPK MAP2K MAP3K Tetrabromobisphenol A NK cells 



This research was supported by Grant 2T34GM007663-33 and 5U54CA163066-03 from the National Institutes of Health.

Conflict of interest

The authors report no conflicts of interest. The authors are alone responsible for the content and writing of the paper.


  1. Abdallah Mohamed AE, Harrad S, Ibarra C, Diamond M, Melymuk L, Robson M, et al. Hexabromocyclododecanes in indoor dust from Canada, the United Kingdom, and the United States. Environ Sci Technol. 2008;42:459–64.PubMedCrossRefGoogle Scholar
  2. Aluoch A, Whalen M. Tributyltin-induced effects on MAP kinases p38 and p44/42 in human natural killer cells. Toxicology. 2005;209:263–77.PubMedCrossRefGoogle Scholar
  3. Aluoch A, Odman-Ghazi S, Whalen M. Alteration of an essential NK cell signaling pathway by low doses of tributyltin in human natural killer cells. Toxicology. 2006;224:229–37.PubMedCrossRefGoogle Scholar
  4. Ballas ZK, Turner JM, Turner DA, Goetzman EA, Kemp JD. A patient with simultaneous absence of “classical”- natural killer cells (CD3-, CD16+, and NKH1+) and expansion of CD3+, CD4-, CD8-, NKH1+ subset. J Allergy Clin Immunol. 1990;85:453–9.PubMedCrossRefGoogle Scholar
  5. Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? Environ Health Perspect. 2004;112:9–17.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Biron CA, Byron KS, Sullivan JL. Severe herpes virus in an adolescent without natural killer cells. N Engl J Med. 1989;320:1731–5.PubMedCrossRefGoogle Scholar
  7. Bustnes JO, Yoccoz NG, Bangjord G, Polder A, Skaare JU. Temporal trends (1986–2004) of organochlorines and brominated flame retardants in tawny owl eggs from northern Europe. Environ Sci Technol. 2007;41:8491–7.PubMedCrossRefGoogle Scholar
  8. Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, et al. Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol. 2006;40:3679–88.PubMedCrossRefGoogle Scholar
  9. de Wit CA. An overview of brominated flame retardants in the environment. Chemosphere. 2002;46:583–624.PubMedCrossRefGoogle Scholar
  10. Dudimah FD, Griffey D, Wang X, Whalen MM. Activation of p44/42 MAK plays a role in TBT-induced loss of human natural killer (NK) cell function. Cell Biol Toxicol. 2010a;26:435–44.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Dudimah FD, Abraha A, Wang X, Whalen MM. Activation of p44/42 MAPK in human natural killer cells decreases cell-surface protein expression: relationship to tributyltin-induced alterations of protein expression. Toxicol Mech Methods. 2010b;20:544–55.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Eriksson P, Fischer C, Wallin M, Jakobsson E, Frederisson A. Impaired behaviour, learning and memory, in adult mice neonatally exposed to hexabromocyclododecane (HBCDD). Environ Toxicol Pharmacol. 2006;21:317–22.PubMedCrossRefGoogle Scholar
  13. Fleisher G, Koven N, Kamiya H, Henle W. A non-X-linked syndrome with susceptibility to severe Epstein-Bar virus infections. J Pediatr. 1982;100:727–30.PubMedCrossRefGoogle Scholar
  14. Fukuda N, Ito Y, Yamaguchi M, Mitumori K, Koizumi M, Hasegawa R, et al. Unexpected nephrotoxicity induced by tetrabromobisphenol A in newborn rats. Toxicol Lett. 2004;150:145–55.PubMedCrossRefGoogle Scholar
  15. Gain B. Flame retardants’ Albemarle boosts capacity. Chem 1997. Week (July 2, 1997, p. 88). Full text available from PROMT 97:369076.Google Scholar
  16. Germer S, Piersma AH, van der Ven L, Kamyschnikow A, Fery Y, Schmitz H-J, et al. Subacute effects of the brominated flame retardants hexabromocyclododecane and tetrabrombisphenol A on hepatic cytochrome P450 levels in rats. Toxicology. 2006;218:229–36.PubMedCrossRefGoogle Scholar
  17. Hagmar L, Jakobsson K, Thuresson K, Rylander L, Sjodin A, Bergman A. Computer technicians are occupationally exposed to polybrominated diphenyl ethers and tetrabromobisphenol A. Organohalogen Comp. 2000;47:202–5.Google Scholar
  18. Hinkson NC, Whalen MM. Hexabromocyclododecane decreases the lytic function and ATP levels of human natural killer cells. J Appl Toxicol. 2009;29:656–61. PMCID: PMC2788026.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hinkson NC, Whalen MM. Hexabromocyclododecane decreases tumor-cell-binding capacity and cell-surface protein expression of human natural killer cells. J Appl Toxicol. 2010;30:302–9. PMCID: PMC2876233.PubMedCentralPubMedCrossRefGoogle Scholar
  20. HSDB (Hazardous Substances Data Bank). 2,2′,6,6′-Tetrabromobisphenol A. Bethesda, MD: National Library of Medicine, 2001.
  21. Hurd T, Whalen MM. Tetrabromobisphenol A decreases cell-surface proteins involved in human natural killer (NK) cell-dependent target cell lysis. J Immunotoxicol. 2011;8:219–27. PMCID: PMC3145820.PubMedCentralPubMedCrossRefGoogle Scholar
  22. IPCS/WHO (International Program on Chemical Safety/World Health Organization). Environmental Health Criteria 172: tetrabromobisphenol A and derivatives. Geneva: World Health Organization; 1995.Google Scholar
  23. Janák K, Sellström U, Johansson AK, Becher G, de Wit CA, Lindberg P, et al. Enantiomer-specific accumulation of hexabromocyclododecanes in eggs of predatory birds. Chemosphere. 2008;73:S193–200.PubMedCrossRefGoogle Scholar
  24. Kajiwara N, Sueoka M, Ohiwa T, Takigami H. Determination of flame-retardant hexabromocyclododecane diastereomers in textiles. Chemosphere. 2009;74:1485–9.PubMedCrossRefGoogle Scholar
  25. Kakimoto K, Akutsu K, Konishi Y, Tanaka Y. Time trend of hexabromocyclododecane in the breast milk of Japanese women. Chemosphere. 2008;71:1110–4.PubMedCrossRefGoogle Scholar
  26. Kibakaya EC, Stephen K, Whalen MM. Tetrabromobisphenol A has immunosuppressive effects on human natural killer cells. J Immunotoxicol. 2009;6:285–92. PMCID: PMC2782892.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Knutsen HK, Kvalem HE, Thomsen C, Froshaug M, Haugen M, Becher G, et al. Dietary exposure to brominated flame retardants correlates with male blood levels in a selected group of Norwegians with a wide range of seafood consumption. Mol Nutr Food Res. 2008;52:217–27.PubMedCrossRefGoogle Scholar
  28. Lotzova E. Definition and function of natural killer cells. Nat Immunol. 1993;12:177–93.Google Scholar
  29. Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58:621–31.PubMedCrossRefGoogle Scholar
  30. Lu LM, Zavitz CC, Chen B, Kianpour S, Wan Y, Stampfli MR. Cigarette smoke impairs NK cell-dependent tumor immune surveillance. J Immunol. 2007;178:936–43.PubMedCrossRefGoogle Scholar
  31. Luebke RW, Riddle MM, Rogers RR, Rowe DG, Garner RJ, Smialowicz RJ. Immune function in adult C57BL/6 J mice following exposure to urethane pre-or post natally. J Immunopharmacol. 1986;8:243–57.PubMedCrossRefGoogle Scholar
  32. Meerts IA, van Zanden JJ, Luijks EA, van Leeuwen-Bol I, Marsh G, Jakobsson E, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 2000;56:95–104.PubMedCrossRefGoogle Scholar
  33. Nagayama J, TakasugaT, and Tsuji, H. (Eds.). Contamination levels of brominated flame retardants, dioxins, and organochlorine compounds in the blood of Japanese adults. In: Human Levels and Trends, Part 4, 2001. pp. 218–221. Located at
  34. Odman-Ghazi S, Abraha A, Isom E, Whalen M. Dibutyltin activates MAP kinases in human natural killer cells, in vitro. Cell Biol Toxicol. 2010;26:469–79.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Ortaldo JR, Glenn GM, Young HA, Frey JL. Natural killer (NK) cell lytic dysfunction and putative NK cell receptor expression abnormality in members of a family with chromosome 3p-linked von Hippel-Lindau disease. J Natl Cancer Inst. 1992;84:1897–903.PubMedCrossRefGoogle Scholar
  36. Peck AM, Pugh RS, Moors A, Ellisor MB, Porter BJ, Becker PR, et al. Hexabromocyclododecane in white-sided dolphins: temporal trend and stereoisomer distribution in tissues. Environ Sci Technol. 2008;42:2650–5.PubMedCrossRefGoogle Scholar
  37. Peterman PH, Orazio CE, Gale RW. Detection of tetrabromobisphenol A and formation of brominated [13C]-bisphenol A’s in commercial drinking water stored in reusable polycarbonate containers. ACS Div Environ Chem Extended Abstr. 2000;40:431–3.Google Scholar
  38. Polder A, Venter B, Skaare JU, Bouwman H. Polybrominated diphenyl ethers and HBCD in bird eggs of South Africa. Chemosphere. 2008;73:148–54.PubMedCrossRefGoogle Scholar
  39. Pulkrabova J, Hradkova P, Hajslova J, Poustka J, Napravnikova M, Polacek V. Brominated flame retardants and other organochlorine pollutants in human adipose tissue samples from the Czech Republic. Environ Intl. 2009;35:63–8.CrossRefGoogle Scholar
  40. Ronisz D, Farmen Finne E, Karlsson H, Forlin L. Effects of the brominated flame retardants hexabromocyclododecane (HBCDD), and tetrabromobisphenol A (TBBPA), on hepatic enzymes and other biomarkers in juvenile rainbow trout and feral eelpout. Aquat Toxicol. 2004;69:229–45.PubMedCrossRefGoogle Scholar
  41. Schauer UM, Volkel W, Dekant W. Toxicokinetics of tetrabromobisphenol A in humans and rats after oral administration. Toxicol Sci. 2006;91:49–58.PubMedCrossRefGoogle Scholar
  42. Sellstroem U, Jansson B. Analysis of tetrabromobisphenol A in a product and environmental samples. Chemosphere. 1995;31:3085–92.CrossRefGoogle Scholar
  43. Shenoy AM, Sidner RA, Brahmi Z. Signal transduction in cytotoxic lymphocyte: decreased calcium influx in NK cell inactivated with sensitive target cells. Cell Immunol. 1993;147:294–301.PubMedCrossRefGoogle Scholar
  44. Taylor TR, Whalen MM. Ziram activates mitogen-activated protein (MAP) kinases and decreases cytolytic protein levels in human natural killer cells. Toxicol Mech Methods. 2011;21:577–84. PMCID: PMC3183386.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Thomsen C, Lundanes E, Becher G. Brominated flame retardants in archived serum samples from Norway: a study on temporal trends and the role of age. Environ Sci Technol. 2002;36:1414–8.PubMedCrossRefGoogle Scholar
  46. Thomsen C, Froshaug M, Leknes H, Becher G. Brominated flame retardants in breast milk from Norway. Organohalogen Compd. 2003;64:33–6.Google Scholar
  47. Thomsen C, Froshaug M, Broadwell SI, Becher G, Eggesbo M. Levels of brominated flame retardants in milk from the Norwegian human milk study: HUMIS. Organohalogen Compd. 2005;67:509–12.Google Scholar
  48. Thornton JW, McCallyM, and Houlihan J. Biomonitoring of industrial pollutants: health and policy implications of the chemical body burden. Public Health Rep. 2002. 117, 315323.
  49. Trotta R, Puorro KA, Paroli M, Azzoni L, Abebe B, Eisenlohr LC, et al. Dependence of both spontaneous and antibody-dependent, granule exocytosis-mediated NK cell cytotoxicity on extracellular signal-regulated kinases. J Immunol. 1998;161:6648–56.PubMedGoogle Scholar
  50. Trotta R, Fettuciari K, Azzoni L, Abebe B, Puorro KA, Eisenlohr LC, et al. Differential role of p38 and c-Jun N-terminal kinase 1 mitogen-activated protein kinases in NK cell cytotoxicity. J Immunol. 2000;165:1782–9.PubMedCrossRefGoogle Scholar
  51. van der Ven LT, Verhoef A, van de Kuil T, Slob W, Leonards PE, Visser TJ, et al. A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in Wistar rats. Toxicol Sci. 2006;94:281–92.PubMedCrossRefGoogle Scholar
  52. van Leeuwen SP, de Boer J. Brominated flame retardants in fish and shellfish - levels and contribution of fish consumption to dietary exposure of Dutch citizens to HBCD. Mol Nutr Food Res. 2008;52:194–203.PubMedCrossRefGoogle Scholar
  53. Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science. 2004;306:1517–9.PubMedCrossRefGoogle Scholar
  54. Whalen MM, Green SA, Loganathan BG. Brief butyltin exposure induces irreversible inhibition of the cytotoxic function on human natural killer cells in vitro. Environ Res. 2002;88:19–29.PubMedCrossRefGoogle Scholar
  55. Wilson SD, McCay JA, Butterworth LF, Munson AE, White Jr KL. Correlation of suppressed natural killer cell activity with altered host resistance models in B6C3F1 mice. Toxicol Appl Pharmacol. 2001;177:208–18.PubMedCrossRefGoogle Scholar
  56. Xu T, Wu X, Chen Q, Zhu S, Liu Y, Pan D, et al. The anti-apoptotic effects of salvianolic acid A on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of ERK1/2/JNK pathway. Plos One. 2014;9:1–14.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Anita Cato
    • 1
  • Lindsay Celada
    • 1
  • Esther Caroline Kibakaya
    • 2
  • Nadia Simmons
    • 2
  • Margaret M. Whalen
    • 2
  1. 1.Department of Biological SciencesTennessee State UniversityNashvilleUSA
  2. 2.Department of ChemistryTennessee State UniversityNashvilleUSA

Personalised recommendations