Skip to main content

Advertisement

Log in

Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10–0.5 μM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdallah Mohamed AE, Harrad S, Ibarra C, Diamond M, Melymuk L, Robson M, et al. Hexabromocyclododecanes in indoor dust from Canada, the United Kingdom, and the United States. Environ Sci Technol. 2008;42:459–64.

    Article  PubMed  Google Scholar 

  • Aluoch A, Whalen M. Tributyltin-induced effects on MAP kinases p38 and p44/42 in human natural killer cells. Toxicology. 2005;209:263–77.

    Article  CAS  PubMed  Google Scholar 

  • Aluoch A, Odman-Ghazi S, Whalen M. Alteration of an essential NK cell signaling pathway by low doses of tributyltin in human natural killer cells. Toxicology. 2006;224:229–37.

    Article  CAS  PubMed  Google Scholar 

  • Ballas ZK, Turner JM, Turner DA, Goetzman EA, Kemp JD. A patient with simultaneous absence of “classical”- natural killer cells (CD3-, CD16+, and NKH1+) and expansion of CD3+, CD4-, CD8-, NKH1+ subset. J Allergy Clin Immunol. 1990;85:453–9.

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? Environ Health Perspect. 2004;112:9–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biron CA, Byron KS, Sullivan JL. Severe herpes virus in an adolescent without natural killer cells. N Engl J Med. 1989;320:1731–5.

    Article  CAS  PubMed  Google Scholar 

  • Bustnes JO, Yoccoz NG, Bangjord G, Polder A, Skaare JU. Temporal trends (1986–2004) of organochlorines and brominated flame retardants in tawny owl eggs from northern Europe. Environ Sci Technol. 2007;41:8491–7.

    Article  CAS  PubMed  Google Scholar 

  • Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, et al. Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol. 2006;40:3679–88.

    Article  CAS  PubMed  Google Scholar 

  • de Wit CA. An overview of brominated flame retardants in the environment. Chemosphere. 2002;46:583–624.

    Article  PubMed  Google Scholar 

  • Dudimah FD, Griffey D, Wang X, Whalen MM. Activation of p44/42 MAK plays a role in TBT-induced loss of human natural killer (NK) cell function. Cell Biol Toxicol. 2010a;26:435–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dudimah FD, Abraha A, Wang X, Whalen MM. Activation of p44/42 MAPK in human natural killer cells decreases cell-surface protein expression: relationship to tributyltin-induced alterations of protein expression. Toxicol Mech Methods. 2010b;20:544–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksson P, Fischer C, Wallin M, Jakobsson E, Frederisson A. Impaired behaviour, learning and memory, in adult mice neonatally exposed to hexabromocyclododecane (HBCDD). Environ Toxicol Pharmacol. 2006;21:317–22.

    Article  CAS  PubMed  Google Scholar 

  • Fleisher G, Koven N, Kamiya H, Henle W. A non-X-linked syndrome with susceptibility to severe Epstein-Bar virus infections. J Pediatr. 1982;100:727–30.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda N, Ito Y, Yamaguchi M, Mitumori K, Koizumi M, Hasegawa R, et al. Unexpected nephrotoxicity induced by tetrabromobisphenol A in newborn rats. Toxicol Lett. 2004;150:145–55.

    Article  CAS  PubMed  Google Scholar 

  • Gain B. Flame retardants’ Albemarle boosts capacity. Chem 1997. Week (July 2, 1997, p. 88). Full text available from PROMT 97:369076.

  • Germer S, Piersma AH, van der Ven L, Kamyschnikow A, Fery Y, Schmitz H-J, et al. Subacute effects of the brominated flame retardants hexabromocyclododecane and tetrabrombisphenol A on hepatic cytochrome P450 levels in rats. Toxicology. 2006;218:229–36.

    Article  CAS  PubMed  Google Scholar 

  • Hagmar L, Jakobsson K, Thuresson K, Rylander L, Sjodin A, Bergman A. Computer technicians are occupationally exposed to polybrominated diphenyl ethers and tetrabromobisphenol A. Organohalogen Comp. 2000;47:202–5.

    CAS  Google Scholar 

  • Hinkson NC, Whalen MM. Hexabromocyclododecane decreases the lytic function and ATP levels of human natural killer cells. J Appl Toxicol. 2009;29:656–61. PMCID: PMC2788026.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinkson NC, Whalen MM. Hexabromocyclododecane decreases tumor-cell-binding capacity and cell-surface protein expression of human natural killer cells. J Appl Toxicol. 2010;30:302–9. PMCID: PMC2876233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • HSDB (Hazardous Substances Data Bank). 2,2′,6,6′-Tetrabromobisphenol A. Bethesda, MD: National Library of Medicine, 2001. http://www.toxnet.nlm.nih.gov/cgi-bin/sis/search.

  • Hurd T, Whalen MM. Tetrabromobisphenol A decreases cell-surface proteins involved in human natural killer (NK) cell-dependent target cell lysis. J Immunotoxicol. 2011;8:219–27. PMCID: PMC3145820.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • IPCS/WHO (International Program on Chemical Safety/World Health Organization). Environmental Health Criteria 172: tetrabromobisphenol A and derivatives. Geneva: World Health Organization; 1995.

    Google Scholar 

  • Janák K, Sellström U, Johansson AK, Becher G, de Wit CA, Lindberg P, et al. Enantiomer-specific accumulation of hexabromocyclododecanes in eggs of predatory birds. Chemosphere. 2008;73:S193–200.

    Article  PubMed  Google Scholar 

  • Kajiwara N, Sueoka M, Ohiwa T, Takigami H. Determination of flame-retardant hexabromocyclododecane diastereomers in textiles. Chemosphere. 2009;74:1485–9.

    Article  CAS  PubMed  Google Scholar 

  • Kakimoto K, Akutsu K, Konishi Y, Tanaka Y. Time trend of hexabromocyclododecane in the breast milk of Japanese women. Chemosphere. 2008;71:1110–4.

    Article  CAS  PubMed  Google Scholar 

  • Kibakaya EC, Stephen K, Whalen MM. Tetrabromobisphenol A has immunosuppressive effects on human natural killer cells. J Immunotoxicol. 2009;6:285–92. PMCID: PMC2782892.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knutsen HK, Kvalem HE, Thomsen C, Froshaug M, Haugen M, Becher G, et al. Dietary exposure to brominated flame retardants correlates with male blood levels in a selected group of Norwegians with a wide range of seafood consumption. Mol Nutr Food Res. 2008;52:217–27.

    Article  CAS  PubMed  Google Scholar 

  • Lotzova E. Definition and function of natural killer cells. Nat Immunol. 1993;12:177–93.

    Google Scholar 

  • Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58:621–31.

    Article  CAS  PubMed  Google Scholar 

  • Lu LM, Zavitz CC, Chen B, Kianpour S, Wan Y, Stampfli MR. Cigarette smoke impairs NK cell-dependent tumor immune surveillance. J Immunol. 2007;178:936–43.

    Article  CAS  PubMed  Google Scholar 

  • Luebke RW, Riddle MM, Rogers RR, Rowe DG, Garner RJ, Smialowicz RJ. Immune function in adult C57BL/6 J mice following exposure to urethane pre-or post natally. J Immunopharmacol. 1986;8:243–57.

    Article  CAS  PubMed  Google Scholar 

  • Meerts IA, van Zanden JJ, Luijks EA, van Leeuwen-Bol I, Marsh G, Jakobsson E, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 2000;56:95–104.

    Article  CAS  PubMed  Google Scholar 

  • Nagayama J, TakasugaT, and Tsuji, H. (Eds.). Contamination levels of brominated flame retardants, dioxins, and organochlorine compounds in the blood of Japanese adults. In: Human Levels and Trends, Part 4, 2001. pp. 218–221. Located at http://www.kemi.se/aktuellt/BFR/bfr_del4.pdf.

  • Odman-Ghazi S, Abraha A, Isom E, Whalen M. Dibutyltin activates MAP kinases in human natural killer cells, in vitro. Cell Biol Toxicol. 2010;26:469–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ortaldo JR, Glenn GM, Young HA, Frey JL. Natural killer (NK) cell lytic dysfunction and putative NK cell receptor expression abnormality in members of a family with chromosome 3p-linked von Hippel-Lindau disease. J Natl Cancer Inst. 1992;84:1897–903.

    Article  CAS  PubMed  Google Scholar 

  • Peck AM, Pugh RS, Moors A, Ellisor MB, Porter BJ, Becker PR, et al. Hexabromocyclododecane in white-sided dolphins: temporal trend and stereoisomer distribution in tissues. Environ Sci Technol. 2008;42:2650–5.

    Article  CAS  PubMed  Google Scholar 

  • Peterman PH, Orazio CE, Gale RW. Detection of tetrabromobisphenol A and formation of brominated [13C]-bisphenol A’s in commercial drinking water stored in reusable polycarbonate containers. ACS Div Environ Chem Extended Abstr. 2000;40:431–3.

    CAS  Google Scholar 

  • Polder A, Venter B, Skaare JU, Bouwman H. Polybrominated diphenyl ethers and HBCD in bird eggs of South Africa. Chemosphere. 2008;73:148–54.

    Article  CAS  PubMed  Google Scholar 

  • Pulkrabova J, Hradkova P, Hajslova J, Poustka J, Napravnikova M, Polacek V. Brominated flame retardants and other organochlorine pollutants in human adipose tissue samples from the Czech Republic. Environ Intl. 2009;35:63–8.

    Article  CAS  Google Scholar 

  • Ronisz D, Farmen Finne E, Karlsson H, Forlin L. Effects of the brominated flame retardants hexabromocyclododecane (HBCDD), and tetrabromobisphenol A (TBBPA), on hepatic enzymes and other biomarkers in juvenile rainbow trout and feral eelpout. Aquat Toxicol. 2004;69:229–45.

    Article  CAS  PubMed  Google Scholar 

  • Schauer UM, Volkel W, Dekant W. Toxicokinetics of tetrabromobisphenol A in humans and rats after oral administration. Toxicol Sci. 2006;91:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Sellstroem U, Jansson B. Analysis of tetrabromobisphenol A in a product and environmental samples. Chemosphere. 1995;31:3085–92.

    Article  CAS  Google Scholar 

  • Shenoy AM, Sidner RA, Brahmi Z. Signal transduction in cytotoxic lymphocyte: decreased calcium influx in NK cell inactivated with sensitive target cells. Cell Immunol. 1993;147:294–301.

    Article  CAS  PubMed  Google Scholar 

  • Taylor TR, Whalen MM. Ziram activates mitogen-activated protein (MAP) kinases and decreases cytolytic protein levels in human natural killer cells. Toxicol Mech Methods. 2011;21:577–84. PMCID: PMC3183386.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomsen C, Lundanes E, Becher G. Brominated flame retardants in archived serum samples from Norway: a study on temporal trends and the role of age. Environ Sci Technol. 2002;36:1414–8.

    Article  CAS  PubMed  Google Scholar 

  • Thomsen C, Froshaug M, Leknes H, Becher G. Brominated flame retardants in breast milk from Norway. Organohalogen Compd. 2003;64:33–6.

    CAS  Google Scholar 

  • Thomsen C, Froshaug M, Broadwell SI, Becher G, Eggesbo M. Levels of brominated flame retardants in milk from the Norwegian human milk study: HUMIS. Organohalogen Compd. 2005;67:509–12.

    Google Scholar 

  • Thornton JW, McCallyM, and Houlihan J. Biomonitoring of industrial pollutants: health and policy implications of the chemical body burden. Public Health Rep. 2002. 117, 315323. www.ewg.org/reports/bodyburden/findings.php.

  • Trotta R, Puorro KA, Paroli M, Azzoni L, Abebe B, Eisenlohr LC, et al. Dependence of both spontaneous and antibody-dependent, granule exocytosis-mediated NK cell cytotoxicity on extracellular signal-regulated kinases. J Immunol. 1998;161:6648–56.

    CAS  PubMed  Google Scholar 

  • Trotta R, Fettuciari K, Azzoni L, Abebe B, Puorro KA, Eisenlohr LC, et al. Differential role of p38 and c-Jun N-terminal kinase 1 mitogen-activated protein kinases in NK cell cytotoxicity. J Immunol. 2000;165:1782–9.

    Article  CAS  PubMed  Google Scholar 

  • van der Ven LT, Verhoef A, van de Kuil T, Slob W, Leonards PE, Visser TJ, et al. A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in Wistar rats. Toxicol Sci. 2006;94:281–92.

    Article  PubMed  Google Scholar 

  • van Leeuwen SP, de Boer J. Brominated flame retardants in fish and shellfish - levels and contribution of fish consumption to dietary exposure of Dutch citizens to HBCD. Mol Nutr Food Res. 2008;52:194–203.

    Article  PubMed  Google Scholar 

  • Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science. 2004;306:1517–9.

    Article  CAS  PubMed  Google Scholar 

  • Whalen MM, Green SA, Loganathan BG. Brief butyltin exposure induces irreversible inhibition of the cytotoxic function on human natural killer cells in vitro. Environ Res. 2002;88:19–29.

    Article  CAS  PubMed  Google Scholar 

  • Wilson SD, McCay JA, Butterworth LF, Munson AE, White Jr KL. Correlation of suppressed natural killer cell activity with altered host resistance models in B6C3F1 mice. Toxicol Appl Pharmacol. 2001;177:208–18.

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Wu X, Chen Q, Zhu S, Liu Y, Pan D, et al. The anti-apoptotic effects of salvianolic acid A on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of ERK1/2/JNK pathway. Plos One. 2014;9:1–14.

    Google Scholar 

Download references

Acknowledgments

This research was supported by Grant 2T34GM007663-33 and 5U54CA163066-03 from the National Institutes of Health.

Conflict of interest

The authors report no conflicts of interest. The authors are alone responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Whalen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cato, A., Celada, L., Kibakaya, E.C. et al. Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells. Cell Biol Toxicol 30, 345–360 (2014). https://doi.org/10.1007/s10565-014-9289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-014-9289-y

Keywords

Navigation