Cell Biology and Toxicology

, Volume 29, Issue 3, pp 189–197 | Cite as

Effect of okadaic acid on carpet shell clam (Ruditapes decussatus) haemocytes by in vitro exposure and harmful algal bloom simulation assays

  • Maria Prado-Alvarez
  • Fernanda Flórez-Barrós
  • Josefina Méndez
  • Juan Fernandez-Tajes


Okadaic acid (OA), produced by dinoflagellates during harmful algal blooms (HAB), belongs to the Diarrheic Shellfish Poisoning toxins that cause gastrointestinal symptoms in humans after consumption. In the present work, Ruditapes decussatus haemocytes were selected to evaluate the effect of OA on cell viability, enzymatic status and immune capacity through the measure by flow cytometry of apoptosis–cell death, non-specific esterase activity and phagocytosis. In order to compare different exposure conditions, two experiments were developed: in vitro exposure to OA and HAB simulation by feeding clams with the OA producer, Prorocentrum lima. Apoptosis was not OA dose-dependent and cell death increased in both assays. Phagocytosis of latex beads and esterase activity decreased in haemocytes incubated with OA. In contrast, esterases increased during the feeding with P. lima. Our results showed that OA and the simulated HAB caused damages on haemocyte functions and viability.


Apoptosis Flow cytometry Haemocyte Harmful algal bloom Okadaic acid 



This work was funded by the project 07MMA013103PR. Consellería de Innovación e Industria, INCITE (Xunta de Galicia). Fernanda Flórez Barrós and Juan Fernández Tajes were supported by “Lucas Labrada” and “Angeles Alvariño” programs, respectively, both from Consellería de Innovación e Industria, Xunta de Galicia). We also would like to thank Dr. Gerardo Martínez for his help in OA determination.


  1. Ahn KH, Kim YS, Kim SY, Hub Y, Park C, Jeong JW. Okadaic acid protects human neuroblatoma SH-SY5Y cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis. Neurosci Lett. 2009;449:93–7.PubMedCrossRefGoogle Scholar
  2. Allam B, Ford SE. Effects of the pathogenic Vibrio tapetis on defence factors of susceptible and non-susceptible bivalve species: I. Haemocyte changes following in vitro challenge. Fish Shellfish Immunol. 2006;20:374–83.PubMedCrossRefGoogle Scholar
  3. Allam B, Ashton-Alcox KA, Ford SE. Flow cytometric comparison of haemocytes from three species of bivalve mollusks. Fish Shellfish Immunol. 2002;13:141–58.PubMedCrossRefGoogle Scholar
  4. Betti M, Ciacci C, Lorusso LC, Canonico B, Falcioni T, Gallo G, et al. Effects of tumour necrosis factor α (TNFα) on Mytilus haemocytes: role of stress-activated mitogen-activated protein kinases (MAPKs). Biol Cell. 2006;98:233–44.PubMedCrossRefGoogle Scholar
  5. Binelli A, Cogni D, Parolini M, Riva C, Provini A. In vivo experiments for the evaluation of genotoxic and cytotoxic effects of Triclosan in Zebra mussel hemocytes. Aquat Toxicol. 2009;91:238–44.PubMedCrossRefGoogle Scholar
  6. Biolojan C, Takai A. Inhibitory effect of a marine-sponge toxin okadaic acid on protein phosphatases. Specificity and kinetics. Biochem J. 1988;256:283–90.Google Scholar
  7. Blanco J, Moroño A, Fernández ML. Toxic episodes in shellfish produced by lipophilic phycotoxins: an overiew. Revista Galega de Recursos Mariños. 2005;1:1–70.Google Scholar
  8. Boudreau RT, Conrad DM, Hoskin DW. Apoptosis induced by protein phosphatase 2A (PP2A) inhibition in T leukemia cells is negatively regulated by PP2A-associated p38 mitogen-activated protein kinase. Cell Signal. 2007;19:139–51.PubMedCrossRefGoogle Scholar
  9. Bravo I, Fernández ML, Ramilo I, Martínez A. Toxin composition of the toxic dinoflagellate Prorocentrum lima isolated from different locations along the Galician coast (NW Spain). Toxicon. 2001;39:1537–45.PubMedCrossRefGoogle Scholar
  10. Cabado AG, Leira F, Vieytes MR, Vieites JM, Botana LM. Cytoskeletal disruption is the key factor that triggers apoptosis in okadaic acid-treated neruroblastoma cells. Arch Toxicol. 2004;78:74–85.PubMedCrossRefGoogle Scholar
  11. Canesi L, Pruzzo C, Tarsi R, Gallo G. Surface interactions between Escherichia coli and hemocytes of the Mediterranean mussel Mytilus galloprovincialis Lam leading to efficient bacterial clearance. Appl Environ Microbiol. 2001;67:464–8.PubMedCrossRefGoogle Scholar
  12. Carvalho Pinto-Silva CR, Ferreira JF, Costa RHR, Belli Filho P, Creppy EE, Matias WG. Micronucleus induction in mussels exposed to okadaic acid. Toxicon. 2003;41:93–7.PubMedCrossRefGoogle Scholar
  13. Carvalho Pinto-Silva CR, Creppy EE, Matias WC. Micronucleus test in mussels Perna perna fed with the toxic dinoflagellate Prorocentrum lima. Arch Toxicol. 2005;79:422–6.CrossRefGoogle Scholar
  14. Comesaña-Losada M, Leão JM, Gago-Martínez A, Rodríguez-Vázquez JA, Quilliam MA. Further studies on the analysis of DSP toxin profiles in galician mussels. J Agric Food Chem. 1999;47:618–21.PubMedCrossRefGoogle Scholar
  15. Costa MM, Prado-Alvarez M, Gestal C, Li H, Roch P, Novoa B, et al. Functional and molecular immune response of Mediterranean mussel (Mytilus galloprovincialis) haemocytes against pathogen-associated molecular patterns and bacteria. Fish Shellfish Immunol. 2009;26:515–23.PubMedCrossRefGoogle Scholar
  16. da Silva PM, Hégaret H, Lambert C, Wikfors GH, Goïc NL, Shumway SE, et al. Immunological responses of the Manila clam (Ruditapes philippinarum) with varying parasite (Perkinsus olseni) burden, during a long-term exposure to the harmful alga, Karenia selliformis, and possible interactions. Toxicon. 2008;51:563–73.PubMedCrossRefGoogle Scholar
  17. Dickey RW, Bobzin SC, Faulkner DJ, Bencsath FA, Andrzejewski D. Identification of okadaic acid from a Caribbean dinoflagellate, Prorocentrum concavum. Toxicon. 1990;28:371–7.PubMedCrossRefGoogle Scholar
  18. Dizer H, Fischer B, Harabawy AS, Hennion MC, Hansen PD. Toxicity of domoic acid in the marine mussel Mytilus edulis. Aquat Toxicol. 2001;55:149–56.PubMedCrossRefGoogle Scholar
  19. Feng SY. Cellular defense mechanisms of oysters and mussels. Am Fish Soc Spec Publ. 1988;18:153–68.Google Scholar
  20. Fernández MT, Zitko V, Gascón S, Novelli A. The marine toxin okadaic acid is a potent neurotoxin for cultured cerebellar neurons. Life Sci. 1991;49:157–62.CrossRefGoogle Scholar
  21. Fernández-Sánchez MT, García-Rodríguez A, Díaz-Trelles R, Novelli A. Inhibition of protein phosphatases induces IGF-1-blocked neurotrophin-insensitive neuronal apoptosis. FEBS Lett. 1996;398:106–12.PubMedCrossRefGoogle Scholar
  22. Ferraz-Mello D, de Oliveira Proença LA, Barracco MA. Comparative study of various immune parameters in three bivalve species during a natural bloom of Dinophysis acuminata in Santa Catarina Island, Brazil. Toxins. 2010;2:1166–78.CrossRefGoogle Scholar
  23. Flórez-Barrós F, Prado-Alvarez M, Méndez J, Fernández-Tajes J. Evaluation of genotoxicity in gills and hemolymph of clam Ruditapes decussatus fed with the toxic dinoflagellate Prorocentrum lima. J Toxicol Environ Health Part A. 2011;74:971–9.PubMedCrossRefGoogle Scholar
  24. Franchini A, Malagoli D, Ottaviani E. Targets and effects of yessotoxin okadaic acid and palytoxin: a differential review. Mar Drugs. 2010;8:658–77.PubMedCrossRefGoogle Scholar
  25. Gagnaire B, Thomas-Guyon H, Renault T. In vitro effects of cadmium and mercury on Pacific oyster, Crassostrea gigas (Thunberg), haemocytes. Fish Shellfish Immunol. 2004;16:501–12.PubMedCrossRefGoogle Scholar
  26. Gagnaire B, Thomas-Guyon H, Burgeot T, Renault T. Pollutant effects on Pacific oyster, Crassostra gigas (Thunberg), hemocytes: screening of 23 molecules using flow cytometry. Cell Biol Toxicol. 2006;22:1–14.PubMedCrossRefGoogle Scholar
  27. Galimany E, Place AR, Ramón M, Jutson M, Pipe RK. The effects of feeding Karlodinium veneficum (PLY # 103; Gymnodinium veneficum Ballantine) to the blue mussel Mytilus edulis. Harmful Algae. 2008a;7:91–8.CrossRefGoogle Scholar
  28. Galimany E, Sunila I, Hégaret H, Ramón M, Wikfors GH. Pathology and immune response of the blue mussel (Mytilus edulis L.) after an exposure to the harmful dinoflagellate Prorocentrum minimum. Harmful Algae. 2008b;7:630–8.CrossRefGoogle Scholar
  29. Galimany E, Sunila I, Hégaret H, Ramón M, Wikfors GH. Experimental exposure of the blue mussel (Mytilus edulis, L.) to the toxic dinoflagellate Alexandrium fundyense: histopathology, immune responses, and recovery. Harmful Algae. 2008c;7:702–11.CrossRefGoogle Scholar
  30. García C, Pruzzo M, Rodríguez-Unda N, Contreras C, Lagos N. First evidence of Okadaic acid acyl-derivative and Dinophysistoxin-3 in mussel samples collected in Chiloe Island, Southern Chile. J Toxicol Sci. 2010;35:335–44.PubMedCrossRefGoogle Scholar
  31. García-García E, Prado-Alvarez M, Novoa B, Figueras A, Rosales C. Immune responses of mussel haemocyte subpopulations are differentially regulated by enzymes of the PI 3K, PKC and ERK kinase families. Dev Comp Immunol. 2008;32:637–53.PubMedCrossRefGoogle Scholar
  32. Gestal C, Costa M, Figueras A, Novoa B. Analysis of differentially expressed genes in response to bacterial stimulation in haemocytes of the carpet-shell clam Ruditapes decussatus: identification of new antimicrobial peptides. Gene. 2007;406:134–43.PubMedCrossRefGoogle Scholar
  33. Granade HR, Bencsath FA, Dickey RW. Isolation of analogues of okadaic acid from cultures of Prorocentrum lima. Bull Soc Pathol Exot. 1992;85:478–80.PubMedGoogle Scholar
  34. Hégaret H, Wikfors GH. Time-dependent changes in haemocytes of eastern oysters, Crassostrea virginica, and northern bay scallops, Argopecten irradians irradians, exposed to a cultured strain of Prorocentrum minimum. Harmful Algae. 2005a;4:187–99.CrossRefGoogle Scholar
  35. Hégaret H, Wikfors GH. Effects of natural and field-simulated blooms of the dinoflagellate Prorocentrum minimum upon haemocytes of eastern oysters, Crassostrea virginica, from two different populations. Harmful Algae. 2005b;4:201–9.CrossRefGoogle Scholar
  36. Hégaret H, da Silva PM, Wikfors GH, Lambert C, De Bettignies T, Shumway SE, et al. Hemocyte responses of Manila clam, Ruditapes philippinarum, with varying parasite, Perkinsus olseni, severity to toxic-algal exposures. Aquat Toxicol. 2007;84:469–79.PubMedCrossRefGoogle Scholar
  37. Hégaret H, Smolowitz RM, Sunila I, Shumway SE, Alix J, Dixon M, et al. Combined effects of a parasite, QPX, and the harmful-alga, Prorocentrum minimum on northern quahogs, Mercenaria mercenaria. Mar Environ Res. 2010;69:337–44.PubMedCrossRefGoogle Scholar
  38. Hégaret H, da Silva PM, Wikfors GH, Haberkorn H, Shumway SE, Soudant P. In vitro interactions between several species of harmful algae and haemocytes of bivalve molluscs. Cell Biol Toxicol. 2011;27:249–66.PubMedCrossRefGoogle Scholar
  39. Jayaraj R, Gupta N, Lakshamana Rao PV. Multiple signal transduction pathways in okadaic acid induced apoptosis in HeLa cells. Toxicology. 2009;256:118–27.PubMedCrossRefGoogle Scholar
  40. Kuchel RP, Raftos DA. In vitro effects of noradrenaline on Akoya pearl oyster (Pinctada imbricata) haemocytes. Fish Shellfish Immunol. 2011;31:365–72.PubMedCrossRefGoogle Scholar
  41. Lago J, Santaclara F, Vieites JM, Cabado AG. Collapse of mitochondrial membrane potential and caspases activation are early events in okadaic acid-treated Caco-2 cells. Toxicon. 2005;46:579–86.PubMedCrossRefGoogle Scholar
  42. Le Hégarat L, Puech L, Fessard V, Poul JM, Dragacci S. Aneugenic potential of okadaic acid revealed by the micronucleus assay combined with the FISH technique in CHO-K1 cells. Mutagenesis. 2003;18:293–8.PubMedCrossRefGoogle Scholar
  43. Le Hégarat L, Nesslany F, Mourot A, Marzin D, Fessard V. Lack of DNA damage induction by okadaic acid, a marine toxin, in the CHO-Hprt and the in vitro UDS assays. Mutat Res. 2004;564:139–47.PubMedCrossRefGoogle Scholar
  44. Le Hégarat L, Orsière T, Botta A, Fessard V. Okadaic acid: chromosomal non-disjunction analysis in human lymphocytes and study of aneugenic pathway in CHO-K1 cells. Mutat Res. 2005;578:53–63.PubMedCrossRefGoogle Scholar
  45. Leira F, Alvarez C, Vieites JM, Vieytes MR, Botana LM. Characterization of distinct apoptotic changes induced by okadaic acid and yessotoxin in the BE(2)-M17 neuroblastoma cell line. Toxicol In vitro. 2002;16:23–31.PubMedCrossRefGoogle Scholar
  46. Leira F, Alvarez C, Cabado AG, Vieites JM, Vieytes MR, Botana LM. Development of a F actin-based live-cell fluorimetric microplate assay for diarrhetic shellfish toxins. Anal Biochem. 2003;317:129–35.PubMedCrossRefGoogle Scholar
  47. Malagoli D, Casarini L, Ottaviani E. Effect of the marine toxins okadaic acid and palytoxin on mussel phagocytosis. Fish Shellfish Immunol. 2008;24:180–6.PubMedCrossRefGoogle Scholar
  48. Narain AS. The amoebocytes of lamellibranch molluscs, with special reference to the circulating amoebocytes. Malacol Rev. 1973;6:1–12.Google Scholar
  49. Nuydens R, de Jong M, Van Den Kieboom G, Heers C, Dispersyn G, Cornelissen F, et al. Okadaic acid-induced apoptosis in neuronal cells: evidence for an abortive mitotic attempt. J Neurochem. 1998;70:1124–33.PubMedCrossRefGoogle Scholar
  50. Prado-Alvarez M, Gestal C, Novoa B, Figueras A. Differentially expressed genes of the carpet shell clam Ruditapes decussatus against Perkinsus olseni. Fish Shellfish Immunol. 2009;26:72–83.PubMedCrossRefGoogle Scholar
  51. Prado-Alvarez M, Flórez-Barrós F, Sexto-Iglesias A, Méndez J, Fernandez-Tajes J. Effects of okadaic acid on haemocytes from Mytilus galloprovincialis: a comparison between field and laboratory studies. Mar Environ Res. 2012a;81:90–3.PubMedCrossRefGoogle Scholar
  52. Prado-Alvarez M, Romero A, Balseiro P, Dios S, Novoa B, Figueras A. Morphological characterization and functional immune response of the carpet shell clam (Ruditapes decussatus) haemocytes after bacterial stimulation. Fish Shellfish Immunol. 2012b;32:69–78.PubMedCrossRefGoogle Scholar
  53. Riordan FA, Foroni L, Hoffbrand AV, Mehta AB, Wickremasinghe GR. Okadaic acid-induced apoptosis of HL60 leukemia cells is preceded by destabilization of bcl-2 mRNA and downregulation of bcl-2 protein. FEBS Lett. 1998;435:195–8.PubMedCrossRefGoogle Scholar
  54. Rossini GP, Sgarbi N, Malaguti C. The toxic responses induced by okadaic acid involve processing of multiple caspase isoforms. Toxicon. 2001;39:763–70.PubMedCrossRefGoogle Scholar
  55. Santaclara F, Lago J, Vieites JM, Cabado AG. Effect of okadaic acid on integrins and structural proteins in BE(2)-M17 cells. Arch Toxicol. 2005;79:582–6.PubMedCrossRefGoogle Scholar
  56. Svensson S, Förlin L. Intracellular effects of okadaic acid in the blue mussel Mytilus edulis and rainbow trout Oncorhynchus mykiss. Mar Environ Res. 1998;46:449–52.CrossRefGoogle Scholar
  57. Svensson S, Särngren A, Förlin L. Mussel blood cells, resistant to the cytotoxic effects of okadaic acid, do not express cell membrane p-glycoprotein activity (multixenobiotic resistance). Aquat Toxicol. 2003;65:27–37.PubMedCrossRefGoogle Scholar
  58. Traoré A, Baudrimont I, Ambaliou S, Dano SD, Creppy EE. DNA breaks and cell cycle arrest induced by okadaic acid in Caco-2 cells, a human colonic epithelial cell line. Arch Toxicol. 2001;75:110–7.PubMedCrossRefGoogle Scholar
  59. Valdiglesias V, Méndez J, Pásaro E, Cemeli E, Anderson D, Laffon B. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells. Mutat Res. 2010;689:74–9.PubMedCrossRefGoogle Scholar
  60. Vale C, Botana LM. Marine toxins and cytoskeleton: okadaic acid and dinophysistoxins. FEBS J. 2008;275:6060–6.PubMedCrossRefGoogle Scholar
  61. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J Immunol Methods. 1995;184:39–51.PubMedCrossRefGoogle Scholar
  62. Von Zezschwitz C, Vorwerk H, Tergau F, Steinfelder HJ. Apoptosis induction by inhibitors of Ser/Thr phosphatases 1 and 2A is associated with transglutaminase activation in two different human epithelial tumour lines. FEBS Lett. 1997;413:147–51.CrossRefGoogle Scholar
  63. Xue QG, Renault T, Chilmonczyk S. Flow cytometric assessment of haemocyte sub-populations in the European flat oyster, Ostrea edulis, haemolymph. Fish Shellfish Immunol. 2001;11:557–67.PubMedCrossRefGoogle Scholar
  64. Yasumoto T, Murata M, Oshima Y, Sano M, Matsumoto GK, Clardy J. Diarrhetic shellfish toxins. Tetrahedron. 1985;41:1019–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maria Prado-Alvarez
    • 1
  • Fernanda Flórez-Barrós
    • 1
  • Josefina Méndez
    • 1
  • Juan Fernandez-Tajes
    • 1
  1. 1.Department of Cell and Molecular Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain

Personalised recommendations