Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells

Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles


Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe2O3), iron(II,III) oxide (Fe3O4), magnesium oxide (MgO), aluminum oxide (Al2O3), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12–24 h and 0.001–100 μg/ml of exposure). The results indicated that Fe2O3, Fe3O4, and Al2O3 NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5




Fe2O3 :

Iron(III) oxide

Y2O3 :

Yttrium oxide

CeO2 :

Cerium oxide


Zinc oxide

Fe3O4 :

Iron(II,III) oxide


Magnesium oxide

Al2O3 :

Aluminum oxide


Copper(II) oxide


Endothelial cell medium


Human cardiac microvascular endothelial cells


Lactate dehydrogenase


Reactive oxygen species


Vascular cell adhesion molecule-1


Intercellular adhesion molecule 1


Macrophage cationic peptide-1




  1. Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol. 2009;6:1.

    PubMed  Article  Google Scholar 

  2. Balciunas M, Bagdonaite L, Samalavicius R, Baublys A. Markers of endothelial dysfunction after cardiac surgery: soluble forms of vascular-1 and intercellular-1 adhesion molecules. Medicina (Kaunas). 2009;45(6):434–9.

    Google Scholar 

  3. Chen JR, Shankar K, Nagarajan S, Badger TM, Ronis MJ. Protective effects of estradiol on ethanol-induced bone loss involve inhibition of reactive oxygen species generation in osteoblasts and downstream activation of the extracellular signal-regulated kinase/signal transducer and activator of transcription 3/receptor activator of nuclear factor-kappaB ligand signaling cascade. J Pharmacol Exp Ther. 2008a;324(1):50–9.

    PubMed  Article  CAS  Google Scholar 

  4. Chen L, Yokel RA, Hennig B, Toborek M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol. 2008b;3(4):286–95.

    PubMed  Article  Google Scholar 

  5. De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, et al. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol. 2010;246(3):116–27.

    Article  Google Scholar 

  6. Dossumbekova A, Berdyshev EV, Gorshkova I, Shao Z, Li C, Long P, et al. Vanden Hoek TL. Akt activates NOS3 and separately restores barrier integrity in H2O2-stressed human cardiac microvascular endothelium. Am J Physiol Heart Circ Physiol. 2008;295(6):H2417–26.

    PubMed  Article  CAS  Google Scholar 

  7. Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 2009;23(7):1365–71.

    PubMed  Article  CAS  Google Scholar 

  8. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone Jr MA, et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature. 1999;398(6729):718–23.

    PubMed  Article  CAS  Google Scholar 

  9. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect. 2007;115(3):403–9.

    PubMed  Article  CAS  Google Scholar 

  10. Gojova A, Lee JT, Jung HS, Guo B, Barakat AI, Kennedy IM. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells. Inhal Toxicol. 2009;21 Suppl 1:123–30.

    PubMed  Article  CAS  Google Scholar 

  11. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY, Loo JS. Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol. 2010;48(6):1762–6.

    PubMed  Article  CAS  Google Scholar 

  12. Holman RG, Maier RV. Oxidant-induced endothelial leak correlates with decreased cellular energy levels. Am Rev Respir Dis. 1990;141(1):134–40.

    PubMed  CAS  Google Scholar 

  13. Houle F, Huot J. Dysregulation of the endothelial cellular response to oxidative stress in cancer. Mol Carcinog. 2006;45(6):362–7.

    PubMed  Article  CAS  Google Scholar 

  14. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005;19(7):975–83.

    PubMed  Article  CAS  Google Scholar 

  15. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260(1–3):142–9.

    PubMed  Article  CAS  Google Scholar 

  16. Imai-Sasaki R, Kainoh M, Ogawa Y, Ohmori E, Asai Y, Nakadate T. Inhibition by beraprost sodium of thrombin-induced increase in endothelial macromolecular permeability. Prostaglandins Leukot Essent Fatty Acids. 1995;53(2):103–8.

    PubMed  Article  CAS  Google Scholar 

  17. Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726–32.

    PubMed  Article  CAS  Google Scholar 

  18. Kennedy IM, Wilson D, Barakat AI. Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Res Rep Health Eff Inst. 2009;136:3–32.

    PubMed  Google Scholar 

  19. Kim IS, Baek M, Choi SJ. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol. 2010;10(5):3453–8.

    PubMed  Article  CAS  Google Scholar 

  20. Lai JC, Lai MB, Jandhyam S, Dukhande VV, Bhushan A, Daniels CK, et al. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomedicine. 2008;3(4):533–45.

    PubMed  CAS  Google Scholar 

  21. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001;280(4):C719–41.

    PubMed  CAS  Google Scholar 

  22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    PubMed  Article  CAS  Google Scholar 

  23. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    PubMed  Article  CAS  Google Scholar 

  24. Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54(1):24–38.

    PubMed  Article  CAS  Google Scholar 

  25. Rosas-Hernandez H, Jimenez-Badillo S, Martinez-Cuevas PP, Gracia-Espino E, Terrones H, Terrones M, et al. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett. 2009;191(2–3):305–13.

    PubMed  Article  CAS  Google Scholar 

  26. Savage N, Thomas TA, Duncan JS. Nanotechnology applications and implications research supported by the US Environmental Protection Agency STAR grants program. J Environ Monit. 2007;9(10):1046–54.

    PubMed  Article  CAS  Google Scholar 

  27. van Buul JD, Hordijk PL. Endothelial signalling by Ig-like cell adhesion molecules. Transfus Clin Biol. 2008;15(1–2):3–6.

    PubMed  Google Scholar 

  28. Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol. 2007;4:2.

    PubMed  Article  Google Scholar 

  29. Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut. 2009;157(4):1171–7.

    PubMed  Article  CAS  Google Scholar 

  30. Yu M, Mo Y, Wan R, Chien S, Zhang X, Zhang Q. Regulation of plasminogen activator inhibitor-1 expression in endothelial cells with exposure to metal nanoparticles. Toxicol Lett. 2010;195(1):82–9.

    PubMed  Article  CAS  Google Scholar 

  31. Yuan JH, Chen Y, Zha HX, Song LJ, Li CY, Li JQ, et al. Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids Surf B Biointerfaces. 2010;76(1):145–50.

    PubMed  Article  CAS  Google Scholar 

Download references


This study was supported by grants from the Shanghai Municipal Health Bureau (2008Y077) and the Sub-Project of the National Grand Fundamental Research 863 Program of China (2007AA021802 and 2007AA022004).

Conflict of interest

The authors have no conflict of interest.

Author information



Corresponding author

Correspondence to Hui Liu.

Additional information

Jing Sun and Shaochuang Wang contributed equally in this study.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, J., Wang, S., Zhao, D. et al. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biol Toxicol 27, 333–342 (2011).

Download citation


  • Cytotoxicity
  • Permeability
  • Inflammation
  • Metal oxide nanoparticles
  • Vascular endothelial cells