Advertisement

Cell Biology and Toxicology

, Volume 26, Issue 5, pp 445–455 | Cite as

Morphological and biochemical changes during formocresol induced cell death in murine peritoneal macrophages: apoptotic and necrotic features

  • María Lorena Cardoso
  • Juan Santiago Todaro
  • María Victoria Aguirre
  • Julián Antonio Juaristi
  • Nora Cristina Brandan
Article

Abstract

The present study was conducted to investigate the role of Formocresol (FC)-induced apoptosis and necrotic cell death in murine peritoneal macrophages (pMø). Macrophages were cultured with 1:100 FC for 2 to 24 h. The viability (trypan blue assay), cell morphology (scanning electronic microscope), and apoptotic and necrotic indexes (light and fluorescent microscopy) were determined at different scheduled times. Simultaneously, the expressions of proteins related to stress, survival, and cell death were measured by western blotting. FC-exposed macrophages exhibited maximal apoptosis from 2 to 6 h, coincident with Bax overexpression (P < 0.001). Additionally, Bcl-xL showed maximal expression between 12 and 24 h suggesting its survival effect in pMø. The lowest pMø viability and the increment of the necrotic rate from 4 to 12 h were observed in accordance to Fas and Hsp60 overexpressions. In summary, all the experimental data suggest that two different pathways emerge in pMø exposed to FC, one leading Bax-dependent apoptosis (2–6 h) and the other one favoring necrosis (4–18 h), related to Fas-receptor and Hsp60 stress signal.

Keywords

Macrophages Formocresol Apoptosis Bax Necrosis Fas 

Notes

Acknowledgement

This work was supported by grants from SEGCyT-UNNE (PI016/05) and CONICET (PIP 1302), Argentina. We thank PhD Gabriela Lucas for the clinical view of this study and Mrs Mirta Alba Alvarez for excellent technical assistance.

References

  1. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–6.CrossRefPubMedGoogle Scholar
  2. Aguirre MV, Juaristi JA, Alvarez MA, Brandan NC. Characteristics of in vivo murine erythropoietic response to sodium orthovanadate. Chem Biol Interact. 2005;156:55–68.CrossRefPubMedGoogle Scholar
  3. Aquino Esperanza JA, Aguirre MV, Aispuru GR, Lettieri CN, Alvarez MA, Brandan NC. In vivo 5-flourouracil-induced apoptosis on murine thymocytes: involvement of FAS, Bax and Caspase 3. Cell Biol Toxicol. 2008;24:411–22.CrossRefPubMedGoogle Scholar
  4. Block RM, Lewis RD, Hirsch J, Coffey J, Langeland K. Systemic distribution of 14C- labeled paraformaldehyde incorporated within formocresol following pulpotomies in dogs. J Endod. 1983;9:176–89.CrossRefPubMedGoogle Scholar
  5. Bradford MM. A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMedGoogle Scholar
  6. Casas MJ, Kenny DJ, Peter LJ, Douglas HJ. Do we still need formocresol in pediatric dentistry? J Can Dent Assoc. 2005;7:749–51.Google Scholar
  7. Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;15:1–16.Google Scholar
  8. Da Silva GN, De Camargo EA, Slvadori DMF, Ribeiro DA. Genetic damage in human peripheral lymphocytes exposed to antimicrobial endodontic agents. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:e58–61.PubMedGoogle Scholar
  9. Denecker G, Vercammen D, Steemans M, Vanden Berghe T, Brouckaert G, Van Loo G, et al. Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ. 2001;8:829–40.CrossRefPubMedGoogle Scholar
  10. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405:85–90.CrossRefPubMedGoogle Scholar
  11. Fulton R, Ranly DM. An autoradiographic study of formocresol pulpotomies in rat molars using 3Hformaldehyde. J Endod. 1979;5:71–8.CrossRefPubMedGoogle Scholar
  12. Gasiorowski K, Brokos B, Kulma A, Ogorzale KA, Skorkowska K. A comparison of the methods applied to detect apoptosis in genotoxically-damage lymphocytes cultured in the presence of four antimutagens. Cell Mol Biol lett. 2001;6:141–59.PubMedGoogle Scholar
  13. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.CrossRefPubMedGoogle Scholar
  14. Hagiwara M, Watanabe E, Barret JC, Tsutsui T. Assesment of genotoxicity of 14 chemicals agents used in dental practice: ability to induce chromosome aberrations in Syrian hamster embryo cell. Mutat Res. 2006;603:111–20.PubMedGoogle Scholar
  15. Hetz CA, Bono MR, Barros LF, Lagos R. Microcin E492, a chanel-forming bacterocin from Kleibsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci USA. 2002a;99:2696–701.CrossRefGoogle Scholar
  16. Hetz CA, Hunn M, Rojas P, Torres V, Leyton L, Quest AFG. Caspase-dependent initiation of apoptosis and necrosis by the FAS receptor in lynphoid cells: onset of necrosis is associated with delayed ceramide increase. J Cell Sci. 2002b;115:4671–83.CrossRefGoogle Scholar
  17. Hill MW. The survival of vital and non-vital deciduous molar teeth following pulpotomy. Aust Dent J. 2007;25:795–9.Google Scholar
  18. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valetutti S, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1:489–95.CrossRefPubMedGoogle Scholar
  19. Jacobson MD. Programmed cell death: a missing key is found. Trends Cell Biol. 1997;7:467–9.CrossRefPubMedGoogle Scholar
  20. Juaristi AJ, Aguirre MV, Todaro JS, Alvarez MA, Brandan NC. EPO receptor, Bax and Bcl-xL expressions in murine erythropoiesis after cyclophosphamide treatment. Toxicol. 2007;231:188–99.CrossRefGoogle Scholar
  21. Kawashima N, Okiji T, Kosaka T, Suda H. Kinetics of macrophages and lymphoid cells during development of experimentally induced periapical lesions in rat molars: a quantitative immunohistochemical study. J Endod. 1996;22:311–6.CrossRefPubMedGoogle Scholar
  22. Krammer PH. CD95 (APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol. 1999;71:163–210.CrossRefPubMedGoogle Scholar
  23. Lakics V, Medvedev AE, Okada S, Vogel SN. Inhibition of LPS-induced cytokines by Bcl-XL in a murine macrophages cell line. J Immunol. 2000;165:2729–37.PubMedGoogle Scholar
  24. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosp hate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185:1481–6.CrossRefPubMedGoogle Scholar
  25. Leite M, Quinta-Costa M, Leite PS, Guimaraes JE. Critical evaluation of techniques to detect and measure cell death-study in a model of UV radiation of the leukemia cell line HL 60. Annal Cell Pathol. 1999;19:139–51.Google Scholar
  26. Lewis B. Formaldehyde in dentistry: a review for the millennium. J Clin Pediatr Dent. 1998;22:167–7.PubMedGoogle Scholar
  27. Lewis BB, Chestner SB. Formaldehyde in dentistry: a review of mutagenic and carcinogenic potential. J Am Dent Assoc. 1981;103(3):429–34.PubMedGoogle Scholar
  28. Loos PJ, Han SS. An enzyme histochemical study of the effect of various concentrations of formocresol on connective tissues. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1971;31:571–85.Google Scholar
  29. Lopes EC, García MG, Vellon L, Alvarez L, Hajos SE. Correlation between decrease apoptosis and multidrug resistance (MRD) in murine leukemia T cell lines. Leuk Lymphoma. 2001;42:775–87.CrossRefPubMedGoogle Scholar
  30. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Phatol. 1995;146:3–l5.Google Scholar
  31. Marsden VS, Strassen A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Ann Rev Immunol. 2003;21:71–105.CrossRefGoogle Scholar
  32. Perrera F, Petito C. Formaldehyde: a question of cancer policy? Science. 1982;216(4552):1285–91.CrossRefGoogle Scholar
  33. Ramos ME, Cavalcanti BC, Lotufo LV, de Moraes MO, Cerqueira EM, Pessoa C. Evaluation of mutagenic effects of formocresol: detection of DNA-protein cross-links and micronucleus in mouse bone marrow. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:398–404.CrossRefPubMedGoogle Scholar
  34. Ribeiro DA, Scolastici C, de Lima PL Alves, Marques MEA, Salvadori DMF. Genotoxicity of antimicrobial endodontic compounds by single cell gel (comet) assay in Chinese hamster ovary (CHO) cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:637–40.CrossRefPubMedGoogle Scholar
  35. Ribeiro DA, Marques MEA, Salvadori DMF. Antimicrobial endodontic compounds do not modulate alkylation-induced genotoxicity and oxidative stress in Vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:e32–6.CrossRefPubMedGoogle Scholar
  36. Sant' Anna AT, Spolidório LC, Ramalho LTO. Histological analysis of the association between formocresol and endotoxina in the subcutaneous tissue of mice. Braz Den J. 2008;19:40–5.Google Scholar
  37. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 2000;191:423–33.CrossRefPubMedGoogle Scholar
  38. Schuster GS, Lefevre CA, Wataha JC, White SN. Biocompatibility of posterior restorative materials. J Calif Dent Assoc. 1996;24:17–31.PubMedGoogle Scholar
  39. Schweikl H, Schmalz G. Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines. Eur J Oral Sci. 1996;104:292–9.CrossRefPubMedGoogle Scholar
  40. Segura JJ, Jimenez-Rubio A, Calvo JR. Effects of formocresol alone vs. formocresol with eugenol on macrophage adhesion to plastic surfaces. Pediat Dent. 1998;20:177–80.Google Scholar
  41. Smith NL, Seale NS, Nunn ME. Ferric sulphate pulpotomy in primary molars. Pediatr Dent. 2000;22:192–9.PubMedGoogle Scholar
  42. Soffritti M, Belpoggi F, Lambertini L, Lauriola M, Padovani M, Maltoni C. Results of long-term experimental studies on the carcinogenicity of formaldehyde and acetaldehyde in rats. Ann NY Acad Sci. 2002;982:46–69.CrossRefPubMedGoogle Scholar
  43. Toriya Y, Hashiguchi I, Maeda K. Immunohistochemical examination of the distribution of macrophages and CGRP-immunoreactives nerve fibres in induced rat periapical lesions. Endod Dent Traumatol. 1997;13:6–12.CrossRefPubMedGoogle Scholar
  44. Vercammen D, Beyaert R, Denecker G, Goossenes V, Van Loo G, Declercq W, et al. Inhibition of caspase increases the sensitivity of L929 cells necrosis mediated by tumor necrosis factor. J Exp Med. 1998;187:1477–85.CrossRefPubMedGoogle Scholar
  45. Yodaike RE. The uncertain consequences of formaldehyde toxicity. JAMA. 1981;264(5):1677–8.CrossRefGoogle Scholar
  46. Zhang L, Yu L, Park BH, Kingler KW, Volgestein B. Role of Bax in the apoptotic response to anticancer agents. Science. 2000;290:989–92.CrossRefPubMedGoogle Scholar
  47. Zheng L, He M, Long M, Blomgran R, Stendahl O. Pathogen-induced apoptotic neutrophils express heat shock proteins and elicit activation of human macrophages. J Immunol. 2004;173:6319–26.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • María Lorena Cardoso
    • 1
  • Juan Santiago Todaro
    • 1
  • María Victoria Aguirre
    • 1
  • Julián Antonio Juaristi
    • 1
  • Nora Cristina Brandan
    • 1
    • 2
  1. 1.Faculty of Medicine, Department of BiochemistryNational Northeast UniversityCorrientesArgentina
  2. 2.Cátedra de Bioquímica. Facultad de MedicinaUNNECorrientesArgentina

Personalised recommendations