Cell Biology and Toxicology

, Volume 26, Issue 2, pp 165–176 | Cite as

Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae

Morphological alterations in the midgut of A. mellifera
  • Aline da Silva Cruz
  • Elaine C. M. da Silva-Zacarin
  • Odair C. Bueno
  • Osmar Malaspina


Morphological alterations, by means of histological and ultrastructural analysis, have been used to determine the effects of boric acid and fipronil on midgut tissues of honeybee worker, Apis mellifera L. larvae. In order to observe possible morphological alterations in the midgut, two groups of bioassays were performed. In the first one, the larvae were chronically treated with different concentrations of boric acid added to the food (1.0, 2.5 and 7.5 mg/g). In the second group, the larvae were fed with diets containing different concentrations of fipronil (0.1 and 1 μg/g) and compared with control groups without these chemical compounds. In the first bioassay, the larvae were collected on day 3 and in the second bioassay on day 4, when the mortality rate obtained in the toxicological bioassay was not very high. The larval midguts were removed and processed for morphological analyses using a light and transmission electron microscopy. We observed cytoplasmic vacuolizations, with the absence of autophagic vacuoles, and chromatinic compacting in most of the cells in the groups treated with pesticides. The morphological alterations were far greater in the larvae treated with boric acid than in the larvae treated with fipronil. Our data suggest that the midgut cell death observed was in response to boric acid and fipronil action. This study significantly improves the understanding of the toxicological effect of these insecticides from the ecotoxicological perspective.


Ultrastructure Histology Boric acid Fipronil Midgut Honeybee larvae 



We thank CNPq for the financial support and the Department of Biology at UNESP-Rio Claro for the technical support.


  1. Ali A, Nayar JK, Gu WD. Toxicity of a phenyl pyrazole insecticide, fipronil, to mosquito and chironomid midge larvae in the laboratory. J Am Mosq Control Assoc. 1998;14(2):216–8.PubMedGoogle Scholar
  2. Babendreier D, Kalberer N, Romeis J, Fluri P, Bigler F. Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie. 2004;35:293–300.CrossRefGoogle Scholar
  3. Balanca G, Visscher M. Impacts on non-target insects of a new insecticide compound used against the desert locust [Schistocerca gregaria (Forskal 1775)]. Environ Contam Toxicol. 1997;32:58–62.CrossRefGoogle Scholar
  4. Bloomquist JR. Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol. 2003;54(4):145–56.CrossRefPubMedGoogle Scholar
  5. Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB. Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharmacol. 2005;68(4):942–51.CrossRefPubMedGoogle Scholar
  6. Caetano FH, Torres AHJ, Mathias MIC, Tomotake MEM. Apocrine secretion in the ant, Pachycondyla striata, ventriculus (Formicidae: Ponerinae). Cytobios. 1994;80:235–42.Google Scholar
  7. Cavalcante VM, Cruz-Landim C. Types of cells present in the midgut of the insects: A review. Naturalia. 1999;24:19–40.Google Scholar
  8. Chandler GT, Cary TL, Volz DC, Walse SS, Ferry JL, Klosterhaus SL. Fipronil effects on estuarine copepod (Amphiascus tenuiremis) development, fertility, and reproduction: a rapid life-cycle assay in 96-well microplate format. Environ Toxicol Chem. 2004;23(1):117–24.CrossRefPubMedGoogle Scholar
  9. Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, Aubert M. A survey of Pesticide Residues in Pollen Loads by Honeybees in France. J Econ Entomol. 2006;99:253–62.CrossRefPubMedGoogle Scholar
  10. Cochran DG. Toxic effects of boric acid on the German cockroach. Cell Mol Life Sci. 1995;51:561–4.CrossRefGoogle Scholar
  11. Cruz-Landim C, Cavalcante VM. Ultraestructural and cytochemical aspects of metamorphosis in the midgut of Apis mellifera L. (Hymenoptera: Apidae: Apinae). Zool Sci. 2003;20:1099–107.CrossRefPubMedGoogle Scholar
  12. Cruz-Landim C, Melo RA. Desenvolvimento e Envelhecimento de larvas e adultos de Scaptotrigona postica latreille (Hymenoptera, Apidae): aspectos histológicos e histoquímicos. São Paulo: ACIESP; 1981: 118pp.Google Scholar
  13. Cruz-Landim, C. Biologia do desenvolvimento em abelhas. Departamento de Biologia, Instituto de Biociências, UNESP – Rio Claro, 2004. In: <>. Access: Oct. 09 2007.
  14. Dai JD, Gilbert LI. Programmed cell death of the prothoracic glands of Manduca sexta during pupal-adult metamorphosis. Insect Biochem Molec Biol. 1997;27(1):69–78.CrossRefGoogle Scholar
  15. Devillers J, Pham-Delègue M. Honey bees: Estimating the environmental impact of chemicals. New York: Taylor and Francis Inc; 2002: 332p.Google Scholar
  16. Durmus Y, Büyükgüzel K. Biological and Immune Response of Galleria mellonella (Lepidoptera: Pyralidae) to Sodium Tetraborate. J Econ Entomol. 2008;101(3):777–83.CrossRefPubMedGoogle Scholar
  17. Dzitoyeva S, Gutnov A, Imbesi M, Dimitrijevic N, Manev H. Developmental role of GABAB(1) receptors in Drosophila. Dev Brain Res. 2005;158(1–2):111–4.CrossRefGoogle Scholar
  18. Ebelin W, Reierson DA, Pence RJ, Viray MS. Silica aerogel and boric acid against cockroaches: external and internal action. Pestic Biochem Physiol. 1975;5:81–9.CrossRefGoogle Scholar
  19. Enell L, Hamasaka Y, Kolodziejczyk A, Nässel DR. Gamma-aminobutyric acid (GABA) signaling components in Drosophila: Immunocytochemical localization of GABA(B) receptors in relation to the GABA(A) receptor subunit RDL and a vesicular GABA transporter. J Comp Neurol. 2007;505(1):18–31.CrossRefPubMedGoogle Scholar
  20. Gregorc S, Bowen ID. Programmed cell death in honeybee (Apis mellifera) larvae midgut. Cell Biol Int. 1996;21:151–8.CrossRefGoogle Scholar
  21. Gregorc A, Bowen ID. Programmed cell death in the honey-bee (Apis mellifera L.) larvae midgut. Cell Biol Int. 1997;21(3):151–58.CrossRefPubMedGoogle Scholar
  22. Gregorc S, Bowen ID. Histopatological and histochemical changes in honeybee larvae (Apis mellifera L.) after infection with Bacillus larvae, the causative agent of American foulbrood disease. Cell Biol Int. 1998;22(2):137–44.CrossRefPubMedGoogle Scholar
  23. Gregorc A, Bowen ID. In situ localization of heat-shock and histone proteins in honeybee (Apis mellifera L.) larvae infected with Paenibacillus larvae. Cell Biol Int. 1999;23(3):211–18.CrossRefPubMedGoogle Scholar
  24. Gregorc A, Bowen ID. Histochemical characterization of cell death in honeybee larvae midgut after treatment with Paenibacillus larvae, Amitraz and Oxytetracycline. Cell Biol Int. 2000;24(5):319–24.CrossRefPubMedGoogle Scholar
  25. Gregorc S, Smodis-Skerl MI. Toxicological and immunohistochemical testing of honeybees after oxalica acid and rotenone treatments. Apidologie. 2007;38:296–305.CrossRefGoogle Scholar
  26. Guimarães M. Colméias às moscas: síndrome misteriosa causa sumiço de abelhas na América e Europa. Pesquisa FAPESP. 2007; 137.Google Scholar
  27. Habes D, Morakchi S, Aribi N, Farine J-P, Soltani N. Boric acid toxicity to the German cockroach, Blattella germenica: Alterations in midgut structure, and acetylcholinestrease and glutathione S- transferase activity. Pestic Biochem Physiol. 2006;84:17–24.CrossRefGoogle Scholar
  28. Häcker G. The morphology of apoptosis. Cell Tissue Res. 2000;301:5–17.CrossRefPubMedGoogle Scholar
  29. Hyrsl P, Buyükgüzel E, Büyükgüzel K. The effects of boric acid-induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella. Arch Insect Biochem. 2007;66:23–31.CrossRefGoogle Scholar
  30. Jesus D, Silva-Zacarin ECM, Malaspina O. Histological studies in the midgut and Malpighian tubules of Apis mellifera workers treated with boric acid. Braz J Morphol Sci. 2005; Suppl: 168.Google Scholar
  31. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.PubMedGoogle Scholar
  32. Klotz JH, Amrhein C, McDaniel S, Rust MK, Reierson DA. Assimilation and toxicity of boron in the Argentine ant (Hymenoptera: Formicidae). J Entomol Sci. 2002;37(2):193–9.Google Scholar
  33. Lockshin RA, Beaulaton J. Programmed cell death. Cytochemical evidence for lysosomes during the normal breakdown of the intersegmental muscles. J Ultrastruct Res. 1974;46:43–62.CrossRefPubMedGoogle Scholar
  34. Malaspina O, Silva-Zacarin ECM. Cell markers for ecotoxicological studies in target organs of bees. Braz J Morphol Sci. 2006;23:303–9.Google Scholar
  35. Malone LA, Tregidga EL, Todd JH, Burgess EPJ, Philip BA, Markwick NP, et al. Effects of ingestion of a biotin-binding protein on adult and larval honey bees. Apidologie. 2002;33:447–58.CrossRefGoogle Scholar
  36. Martins GF, Neves CA, Campos LAO, Serrão JE. The regenerative cells during the metamorphosis in the midgut of bees. Micron. 2006;37:161–8.CrossRefPubMedGoogle Scholar
  37. Morse RA, Calderone NW. The value of honeybees as pollinators of U.S. crops in 2000. Bee Culture. 2000;128:1–15.Google Scholar
  38. National Pesticide Telecommunications Network. (2006) Boric acid (Technical fact sheet). In: <>. Access: Nov. 28 2006.
  39. Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death? Exp Cell Res. 2002;283:1–16.CrossRefGoogle Scholar
  40. Rhône-Poulenc. Atelier International Fipronil/lutte antiacidienne. Unpublished report. Rhône-Poulenc Agrochimie, Lyon, France. 1995Google Scholar
  41. Silva de Moraes RLM, Bowen ID. Modes of cell death in the hypopharyngeal gland of the honey bee (Apis mellifera L.). Cell Biol Int. 2000;24(10):737–43.CrossRefPubMedGoogle Scholar
  42. Silva-Zacarin ECM. Authophagy and Apoptosis coordinate physiological cell death in larval salivary glands of Apis mellifera (Hymenoptera: Apidae). Autophagy. 2007;3:516–8.Google Scholar
  43. Silva-Zacarin ECM, Taboga SR, de Moraes RLM Silva. Nuclear alterations associated to programmed cell death in larval salivary glands. Micron (Oxford). 2008;39(Silva de Moraes RLM):117–27.Google Scholar
  44. Silva-Zacarin ECM, Tomaino GA, Brocheto-Braga MR, Taboga SR, de Silva Moraes RLM. Programmed cell death in the larval salivary glands of Apis mellifera (Hymenoptera, Apidae. J Biosci. 2007;32:309–28.CrossRefPubMedGoogle Scholar
  45. Snodgrass RE. Anatomy of honeybee. New York: Cornell University Press. 1956; 334pp.Google Scholar
  46. Sorour J. Ultrastructural variations in Lethocerus niloticum (Insecta: Hemiptera) caused by pollution in Lake Mariut, Alexandria, Egypt. Ecotoxicol. Environ. Saf. 2001;48:268–74.CrossRefPubMedGoogle Scholar
  47. Thiboldeaux RL, Lindroth RL, Tracy JW. Effects of juglone (5-hydroxy-1, 4-naphthoquinone) on midgut morphology and glutathione status in Saturniid moth larvae. Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol. 1998;120(3):481–7.CrossRefGoogle Scholar
  48. Tingle CC, Rother JA, Dewhurst CF, Lauer S, King WJ. Fipronil: environmental fate, ecotoxicology, and human health concerns. Environ Contam Toxicol. 2003;176:1–66.Google Scholar
  49. Ulloa-Chacón P, Jaramillo GI. Effects of boric acid, fipronil, hydramethylnon, and diflubenzuron baits on colonies of ghost ants (Hymenoptera: Formicidae). J Econ Entomol. 2003;96:856–62.CrossRefPubMedGoogle Scholar
  50. Wegerhoff R. GABA and serotonin immunoreactivity during postembryonic brain development in the beetle Tenebrio molitor. Microsc Res Tech. 1999;45(3):154–64.CrossRefPubMedGoogle Scholar
  51. Xue RD, Ali A, Kline DL, Barnard DR. Field evaluation of boric acid- and fipronil-based bait stations against adult mosquitoes. J Am Mosq Control Assoc. 2008;24(3):415–8.CrossRefPubMedGoogle Scholar
  52. Xue RD, Barnard DR. Boric acid bait kills adult mosquitoes (Diptera: Culicidae). J Econ Entomol. 2003;96(5):1559–62.CrossRefPubMedGoogle Scholar
  53. Xue RD, Kline DL, Ali A, Barnard DR. Application of boric acid baits to plant foliage for adult mosquito control. J Am Mosq Control Assoc. 2006;22(3):497–500.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Aline da Silva Cruz
    • 1
  • Elaine C. M. da Silva-Zacarin
    • 2
  • Odair C. Bueno
    • 1
  • Osmar Malaspina
    • 1
  1. 1.Biology Department, CEIS-Social Insects Studies CenterUNESPRio ClaroBrazil
  2. 2.Functional and Structural Biology LaboratorySão Carlos Federal University-Sorocaba CampusSorocabaBrazil

Personalised recommendations