Cell Biology and Toxicology

, Volume 26, Issue 2, pp 127–141 | Cite as

Biochemical properties of encapsulated high-density 3-D HepG2 aggregates formed in an ultrasound trap for application in hepatotoxicity studies

Biochemical responses of encapsulated 3-D HepG2 aggregates
  • Despina Bazou


This paper describes the alginate encapsulation of preformed high-density 3-D HepG2 cell aggregates that guarantees good maintenance of liver-specific biomarker expression. The process involves forming a high-density (≥7 × 104 cells/aggregate) discoid 3-D cell aggregate in an ultrasound trap, which is subsequently recovered and encapsulated in alginate/CaCl2 hydrogel. Glucose secretion/consumption, lactate release, detoxifying enzyme capacity, cytokeratin-18 expression as well as hypoxia were characterized in encapsulated 3-D HepG2 aggregates over 10 days in culture. Encapsulated 3-D HepG2 aggregates released glucose into the media, although this ability was exhibited only after 1 day in culture and was subsequently lost over the ensuing 9 days. In contrast, lactate was constantly released into the media. Significantly more lactate was secreted after 3 days in culture indicating a more hypoxic environment and hence a higher rate of anaerobic glycolysis. Aggregates consistently expressed cytokeratin-18. Cytochrome P450-1A1 activity reached a maximum on day 1 of culture followed by a progressive reduction to basal levels, while P450-3A4 activity was up-regulated in a time-dependent manner reaching a peak on day 7 in culture. Glutathione-S-transferase activity, on the other hand, was at more physiological levels and remained constant over the 10-day culture period. The ultrasound trap allowed the rapid (within 5 min) generation of uniformly shaped and sized aggregates. The results reported here suggest that ultrasound-formed 3-D HepG2 aggregates can serve as alternative in vitro models providing a quick outlook on toxicity, in a tissue-mimetic manner, thus offering the future option of a cost-effective screening platform for pharmaceutical development.


Drug metabolism Cytokeratin-18 Encapsulation Glucose Hypoxia Ultrasound trap 



Cytochrome P450-1A1


Cytochrome P450-3A4






Hypoxia inducible factor-1α







DB was funded by the Department of Trade and Industry (099). DB is grateful to GOE, EJB, RW, and JS for constructive discussions.


  1. Allen JW, Bhatia SN. Engineering liver therapies for the future. Tissue Eng. 2002;8:725–37. doi: 10.1089/10763270260424097.CrossRefPubMedGoogle Scholar
  2. Bader A, Frühauf N, Tiedge A, Drinkgern M, De Bartolo L, Borlak JT, et al. Enhanced oxygen delivery reverses anaerobic metabolic states in prolonged sandwich rat hepatocyte culture. Exp Cell Res. 1999;246:221–32. doi: 10.1006/excr.1998.4295.CrossRefPubMedGoogle Scholar
  3. Barile FA, Dierickx PJ, Kristen U. In vitro toxicity testing for prediction of acute human toxicity. Cell Biol Toxicol. 1994;10:155–62. doi: 10.1007/BF00757558.CrossRefPubMedGoogle Scholar
  4. Bazou D, Coakley WT, Hayes AJ, Jackson SK. Long-term viability and proliferation of alginate-encapsulated 3-D HepG2 aggregates formed in an ultrasound trap.Toxicol In Vitro. 2008;22:1321–31. doi: 10.1016/j.tiv.2008.03.014.CrossRefPubMedGoogle Scholar
  5. Bazou D, Dowthwaite GP, Khan IM, Archer CW, Ralphs JR, Coakley WT. Gap junctional intercellular communication and cytoskeletal organization in chondrocytes in suspension in an ultrasound trap. Mol Membr Biol. 2006;23:195–205. doi: 10.1080/09687860600555906.CrossRefPubMedGoogle Scholar
  6. Bazou D, Foster GA, Ralphs JR, Coakley WT. Molecular adhesion development in a neural cell monolayer forming in an ultrasound trap. Mol Membr Biol. 2005a;22:229–40. doi: 10.1080/09687860500093396.CrossRefPubMedGoogle Scholar
  7. Bazou D, Kuznetsova L, Coakley WT. Physical environment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap. Ultrasound Med Biol. 2005b;31:423–30. doi: 10.1016/j.ultrasmedbio.2004.12.007.CrossRefPubMedGoogle Scholar
  8. Beningo KA, Dembo M, Wang YL. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc Natl Acad Sci U S A. 2004;101:18024–9. doi: 10.1073/pnas.0405747102.CrossRefPubMedGoogle Scholar
  9. Brosnan JT. Interorgan amino acid transport and its regulation. J Nutr. 2003;133:2068S–72.PubMedGoogle Scholar
  10. Camp JP, Capitano AT. Induction of zone-like liver function gradients in HepG2 cells by varying culture medium height. Biotechnol Prog. 2007;23:1485–91. doi: 10.1021/bp070308v.CrossRefPubMedGoogle Scholar
  11. Cantelli-Forti G, Hrelia P, Paolini M. The pitfall of detoxifying enzymes. Mutat Res Fundam Mol Mech Mutagen. 1998;402:179–83. doi: 10.1016/S0027-5107(97)00296-0.CrossRefGoogle Scholar
  12. Chia SM, Leong KW, Li J, Xu X, Zeng K, Er PN, et al. Hepatocyte encapsulation for enhanced cellular functions. Tissue Eng. 2000;6:481–95. doi: 10.1089/107632700750022134.CrossRefPubMedGoogle Scholar
  13. Chia SM, Wan AC, Quek CH, Mao HQ, Xu X, Shen L, et al. Multi-layered microcapsules for cell encapsulation. Biomaterials. 2002;23:849–56. doi: 10.1016/S0142-9612(01)00191-0.CrossRefPubMedGoogle Scholar
  14. Chin K, Khattak SF, Bhatia SR, Roberts SC. Hydrogel–perfluorocarbon composite scaffold promotes oxygen transport to immobilized cells. Biotechnol Prog. 2008;24:358–66. doi: 10.1021/bp070160f.CrossRefPubMedGoogle Scholar
  15. Coakley WT, Bazou D, Morgan J, Foster GA, Archer CW, Powell K, et al. Cell–cell contact and membrane spreading in an ultrasound trap. Colloid Surf B. 2004;34:221–30. doi: 10.1016/j.colsurfb.2004.01.002.CrossRefGoogle Scholar
  16. Coward SM, Selden C, Mantalaris A, Hodgson HJF. Proliferation rates of HepG2 cells encapsulated in alginate are increased in a microgravity environment compared with static cultures. Artif Organs. 2004;29:152–8. doi: 10.1111/j.1525-1594.2005.29026.x.CrossRefGoogle Scholar
  17. Damelin L, Coward S, Choudhury SF, Chalmers SA, Cox IJ, Robertson NJ, et al. Altered mitochondrial function and cholesterol synthesis influences protein synthesis in extended HepG2 spheroid cultures. Arch Biochem Biophys. 2004;432:167–77. doi: 10.1016/ Scholar
  18. Edwards GO, Bazou D, Kuznetsova LA, Coakley WT. Cell adhesion dynamics and actin cytoskeleton reorganisation in HepG2 cell aggregates. Cell Adhes Commun. 2007;14:9–20. doi: 10.1080/15419060701224849.CrossRefGoogle Scholar
  19. Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S. Hepatocyte behaviour within three-dimensional porous scaffolds. Biotechnol Bioeng. 2000;67:344–53. doi: 10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO;2-2.CrossRefPubMedGoogle Scholar
  20. Groneberg DA, Grosse-Siestrup C, Fisher A. In vitro models to study hepatotoxicity. Toxicol Pathol. 2002;30:394–9. doi: 10.1080/01926230252929972.CrossRefPubMedGoogle Scholar
  21. Gwak SJ, Choi D, Paik SS, Cho SW, Kim SS, Choi CY, et al. A method for the effective formation of hepatocyte spheroids using a biodegradable polymer nanosphere. J Biomed Mater Res A. 2006;78:268–75. doi: 10.1002/jbm.a.30687.PubMedGoogle Scholar
  22. Harmsen S, Koster AS, Beijnen JH, Schellens JH, Meijerman I. Comparison of two immortalized human cell lines to study nuclear receptor-mediated CYP3A4 induction. Drug Metab Dispos. 2008;36:1166–71. doi: 10.1124/dmd.107.017335.CrossRefPubMedGoogle Scholar
  23. Hewitt NJ, Hewitt P. Phase I and II enzyme characterisation of two sources of HepG2 cell lines. Xenobiotica. 2004;34:243–56. doi: 10.1080/00498250310001657568.CrossRefPubMedGoogle Scholar
  24. Hongo T, Kajikawa M, Ishida S, Ozawa S, Ohno Y, Sawada JI, et al. Three-dimensional high density culture of HepG2 cells in a 5 ml radial-flow bioreactor for construction of artificial liver. J Biosci Bioeng. 2005;99:237–44. doi: 10.1263/jbb.99.237.CrossRefPubMedGoogle Scholar
  25. Horiuchi S, Ishida S, Hongo T, Ishikawa Y, Miyajima A, Sawada J, et al. Global gene expression changes inducing drug metabolism and disposition induced by three-dimensional culture of HepG2 cells—involvement of microtubules. Biochem Biophys Res Commun. 2009;378:558–62. doi: 10.1016/j.bbrc.2008.11.088.CrossRefPubMedGoogle Scholar
  26. Jin X, Sun Y, Zhang K, Wang J, Ju X, Lou S. Neocartilage formation from predifferentiated human adipose derived stem cells in vivo. Acta Pharmacol Sin. 2007;28:663–71. doi: 10.1111/j.1745-7254.2007.00553.x.CrossRefPubMedGoogle Scholar
  27. Khalil M, Shariat-Panahi A, Tootle R, Ryder T, McCloskey P, Roberts E, et al. Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J Hepatol. 2001;297:68–77. doi: 10.1016/S0168-8278(00)00080-5.CrossRefGoogle Scholar
  28. Khanna S, Amso NN, Paynter SJ, Coakley WT. Contrast agent bubble and erythrocyte behaviour in a 1.5 MHz standing ultrasound wave. Ultrasound Med Biol. 2003;29:1463–72. doi: 10.1016/S0301-5629(03)01017-2.CrossRefPubMedGoogle Scholar
  29. Khattak SF, Chin KS, Bhatia SR, Roberts SC. Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng. 2006;96:156–66. doi: 10.1002/bit.21151.CrossRefGoogle Scholar
  30. Kirkland D, Phuhler S, Tweats D, Aardema M, Corvi R, Darroudi F, et al. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: reports of an ECVAM workshop. Mutat Res. 2007;628:31–55.PubMedGoogle Scholar
  31. Langsch A, Bader A. Longterm stability of phase I and phase II enzymes of porcine liver cells in flat membrane bioreactors. Biotechnol Bioeng. 2001;76:115–25. doi: 10.1002/bit.1151.CrossRefPubMedGoogle Scholar
  32. Liu J, Kuznetsova LA, Edwards GO, Xu J, Ma M, Purcell WM, et al. Functional three-dimensional HepG2 aggregate cultures generated from an ultrasound trap: comparison with HepG2 spheroids. J Cell Biochem. 2007;102:1180–9. doi: 10.1002/jcb.21345.CrossRefPubMedGoogle Scholar
  33. Ma M, Xu J, Purcell WM. Biochemical and functional changes of rat liver spheroids during spheroid formation and maintenance in culture: I. Morphological maturation and kinetic changes of energy metabolism, albumin synthesis and activities of some enzymes. J Cell Biochem. 2003;90:1166–75. doi: 10.1002/jcb.10730.CrossRefPubMedGoogle Scholar
  34. Maruyama M, Matsunaga T, Harada E, Ohmori S. Comparison of basal gene expression and induction of CYP3As in HepG2 and human fetal liver cells. Biol Pharm Bull. 2007;30:2091–7. doi: 10.1248/bpb.30.2091.CrossRefPubMedGoogle Scholar
  35. Matsuda H, Kinoshita K, Sumida A, Takahashi K, Fukuen S, Fukuda T, et al. Taurine modulates induction of cytochrome P4503A4 mRNA by rifampicin in the HepG2 cell line. Biochim Biophys Acta. 2002;1593:93–8. doi: 10.1016/S0167-4889(02)00345-2.CrossRefPubMedGoogle Scholar
  36. Nakamishi I, Hatakeyama S, Nakayama KI. Formation of Mallory body-like inclusions and cell death induced by deregulated expression of keratin 18. Mol Biol Cell. 2002;13:3441–51. doi: 10.1091/mbc.01-10-0510.CrossRefGoogle Scholar
  37. Ogino M, Nagata K, Yamazoe Y. Selective suppressions of human CYP3A forms, CYP3A5 and CYP3A7, by troglitazone in HepG2 cells. Drug Metab Pharmacokinet. 2002;17:42–6. doi: 10.2133/dmpk.17.42.CrossRefPubMedGoogle Scholar
  38. Ohno M, Motojima K, Okano T, Taniguchi A. Up-regulation of drug-metabolising enzyme genes in layered co-culture of a human liver cell line and endothelial cells. Tissue Eng Part A. 2008;14:1861–9. doi: 10.1089/ten.tea.2007.0160.CrossRefPubMedGoogle Scholar
  39. Ong SY, Dai H, Leong KW. Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture. Biomaterials. 2006;27:4087–97. doi: 10.1016/j.biomaterials.2006.03.022.CrossRefPubMedGoogle Scholar
  40. Otto M, Hansen SH, Dalgaard L, Dubois J, Badolo L. Development of an in vitro assay for the investigation of metabolism-induced drug hepatotoxicity. Cell Biol Toxicol. 2008;24:87–99. doi: 10.1007/s10565-007-9018-x.CrossRefPubMedGoogle Scholar
  41. Rieke M, Gottwald E, Weibezahn KF, Layer PG. Tissue reconstruction in 3D-spheroids from rodent retina in a motion-free, bioreactor-based microstructure. Lab Chip. 2008;8:2206–13. doi: 10.1039/b806988c.CrossRefPubMedGoogle Scholar
  42. Ringel M, von Mach MA, Santos R, Feilen PJ, Brulport M, Hermes M, et al. Hepatocytes cultured in alginate microspheres: an optimized technique to study enzyme induction. Toxicology. 2005;206:153–67. doi: 10.1016/j.tox.2004.07.017.CrossRefPubMedGoogle Scholar
  43. Rodriguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, et al. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica. 2002;32:505–20. doi: 10.1080/00498250210128675.CrossRefPubMedGoogle Scholar
  44. Schmeisch AP, de Oliveira DS, Ide LT, Suzuki-Kemmelmeier F, Bracht A. Zonation of the metabolic action of vasopressin in the bivascularly perfused rat liver. Regul Pept. 2005;129:233–43. doi: 10.1016/j.regpep. 2005.03.005.CrossRefPubMedGoogle Scholar
  45. Schoonen WGEJ, de Roos JADM, Wilkening WMA, Débiton E. Cytotoxic effects of 110 reference compounds on HepG2 cells and for 60 compounds on HeLa, ECC-1 and CHO cells. II. Mechanistic assays on NAD(P)H, ATP and DNA content. Toxicol In Vitro. 2005;19:491–503. doi: 10.1016/j.tiv.2005.01.002.CrossRefPubMedGoogle Scholar
  46. Schuetz EG, Schuetz JD, Strom SC, Thompson MT, Fisher RA, Molowa DT, et al. Regulation of human liver cytochromes P-450 in family 3A in primary and continuous-culture of human hepatocytes. Hepatology. 1993;18:1254–62.CrossRefPubMedGoogle Scholar
  47. Seo SJ, Choi YJ, Akaike T, Higuchi A, Cho CS. Alginate/galactosylated chitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes. Tissue Eng. 2006;12:33–44. doi: 10.1089/ten.2006.12.33.CrossRefPubMedGoogle Scholar
  48. Sumida KD, Crandall SC, Chadha PL, Qureshi T. Differential effects of alcohol upon gluconeogenesis from lactate in young and old hepatocytes. Exp Gerontol. 2005;40:324–9. doi: 10.1016/j.exger.2005.01.005.CrossRefPubMedGoogle Scholar
  49. Ushui T, Saitoh Y, Komada F. Induction of CYP3As in HepG2 cells by several drugs—association between induction of CYP3A4 and expression of glucocorticoid receptor. Biol Pharm Bull. 2003;26:510–7. doi: 10.1248/bpb.26.510.CrossRefGoogle Scholar
  50. Van Delft JH, Van Agen E, Van Breda SG, Herwijnen MH, Staal YC, Kleinjans JC. Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling. Carcinogenesis. 2004;25:1265–76. doi: 10.1093/carcin/bgh108.CrossRefPubMedGoogle Scholar
  51. Von Allmen D, Li SJ, Hasselgren PO, Fischer JE. Effect of ischemia on protein synthesis in the septic liver. Surg Gynecol Obstet. 1991;172:441–8.Google Scholar
  52. Wang LS, Sun JH, Li L, Harbour C, Mears D, Koutalistras N, et al. Factors affecting hepatocyte viability and CYPIA1 activity during encapsulation. Artifi Cell Blood Sub. 2000;28:215–27. doi: 10.3109/10731190009119353.CrossRefGoogle Scholar
  53. Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML. Three-dimensional primary hepatocyte culture is synthetic self-assembling peptide hydrogel. Tissue Eng. 2008;14:227–36. doi: 10.1089/tea.2007.0143.CrossRefGoogle Scholar
  54. Wei X, Wang CY, Liu QP, Li J, Li D, Zhao FT, et al. In vitro hepatic differentiation of mesenchymal stem cells from human fetal bone marrow. J Int Med Res. 2008;36:721–7.PubMedGoogle Scholar
  55. Wells MJ, Hatton MWC, Hewlett B, Podor TJ, Sheffield WP, Blajchman MA. Cytokeratin 18 is expressed on the hepatocyte plasma membrane surface and interacts with thrombin–antithrombin complexes. J Biol Chem. 1997;272:28574–81. doi: 10.1074/jbc.272.45.28574.CrossRefPubMedGoogle Scholar
  56. Westernik WMA, Schoonen WGEJ. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro. 2007;21:1592–602. doi: 10.1016/j.tiv.2007.06.017.CrossRefGoogle Scholar
  57. Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties. Drug Metab Dispos. 2003;31:1035–42. doi: 10.1124/dmd.31.8.1035.CrossRefPubMedGoogle Scholar
  58. Xu J, Ma M, Purcell WM. Optimising the enzymatic determination of galactose in the culture media of rat liver and HepG2 spheroids. Anal Biochem. 2002;311:179–81. doi: 10.1016/S0003-2697(02)00400-1.CrossRefPubMedGoogle Scholar
  59. Xu J, Ma M, Purcell WM. Characterisation of some cytotoxic endpoints using rat liver and HepG2 spheroids as in vitro models and their application in hepatotoxicity studies I. Glucose metabolism and enzyme release as cytotoxic markers. Toxicol Appl Pharmacol. 2003;189:100–11. doi: 10.1016/S0041-008X(03)00089-9.CrossRefPubMedGoogle Scholar
  60. Xu J, Purcell WM. Energy metabolism and biotransformation as endopoints to pre-screen hepatotoxicity using a liver spheroid model. Toxicol Appl Pharmacol. 2006;216:295–302. doi: 10.1016/j.taap.2006.05.015.CrossRefGoogle Scholar
  61. Zhang X, Wang W, Yu W, Xie Y, Zhang X, Zhang Y, et al. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol Prog. 2005;21:1289–96. doi: 10.1021/bp050003l.CrossRefPubMedGoogle Scholar
  62. Zheng X, Ruas JL, Cao R, Salomons FA, Cao Y, Poellinger L, et al. Cell-type specific regulation of degradation of hypoxia-inducible factor 1α: role of subcellular compartmentalization. Mol Cell Biol. 2006;26:4628–41. doi: 10.1128/MCB.02236-05.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Cardiff School of BiosciencesCardiff UniversityCardiffUK
  2. 2.Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College DublinDublin 2Ireland

Personalised recommendations