Cell Biology and Toxicology

, 25:573 | Cite as

Influence of lactic acid on the proliferation, metabolism, and differentiation of rabbit mesenchymal stem cells



Lactic acid, originated from degradation of biomaterials, cell cultures, and so on, would be a toxic compound in acute states. The present study was undertaken to ascertain whether the proliferation, metabolism, and differentiation of rabbit mesenchymal stem cells (rMSCs) were affected by additional lactic acid. Furthermore, this study aimed to determine whether this influence was due to decreasing pH, increasing osmotic pressure, or chemical action of lactate ion. It was shown that the proliferation and metabolism of MSCs were inhibited by decreasing pH or increasing lactate. However, when osmolarity was adjusted to the same level as that of sodium lactate using sodium chloride, cell proliferation was little affected by osmotic pressure. We also concluded that colony-forming potential and osteogenic differentiation capacity were significantly depressed by decreasing pH or increasing lactate. As was shown, this inhibition of lactate was not only due to osmotic pressure, but also mainly due to chemical action of lactate ion. However, we observed that acidifying extracellular medium and lactate ion promoted the retention of adipogenic differentiation potential of MSCs during in vitro expansion, which suggested that growth arrest and the decrease of osteogenic differentiation potential did not affect the adipogenic conversion of MSCs.


Colony-forming units assays Differentiation Lactic acid Mesenchymal stem cells Metabolism Proliferation 



This work was funded by the National Science Foundation of China (NSFC projects no: 20576036 and 20776044).


  1. Aubin JE. Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2001;2:81–94. doi: 10.1023/A:1010011209064.CrossRefPubMedGoogle Scholar
  2. Babensee JE, Anderson JM, McIntire LV, Mikos AG. Host response to tissue engineered devices. Adv Drug Deliv Rev 1998;33:111–39. doi: 10.1016/S0169-409X(98)00023-4.CrossRefPubMedGoogle Scholar
  3. Bergsma JE, de Bruijn WC, Rozema FR, Bos RRM, Boering G. Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 1995;16:25–31. doi: 10.1016/0142-9612(95)91092-D.CrossRefPubMedGoogle Scholar
  4. Borden M, Attawia M, Laurencin CT. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies. J Biomed Mater Res 2002;61:421–9. doi: 10.1002/jbm.10201.CrossRefPubMedGoogle Scholar
  5. Bunting KD, Hawley RG. Integrative molecular and developmental biology of adult stem cells. Biol Cell 2003;95:563–78. doi: 10.1016/j.biolcel.2003.10.001.CrossRefPubMedGoogle Scholar
  6. Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 2001;98:7841–5. doi: 10.1073/pnas.141221698.CrossRefPubMedGoogle Scholar
  7. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999;107:275–81. doi: 10.1046/j.1365-2141.1999.01715.x.CrossRefPubMedGoogle Scholar
  8. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 1999;14:1115–22. doi: 10.1359/jbmr.1999.14.7.1115.CrossRefPubMedGoogle Scholar
  9. Disthabanchong S, Radinahamed P, Stitchantrakul W, Hongeng S, Rajatanavin R. Chronic metabolic acidosis alters osteoblast differentiation from human mesenchymal stem cells. Kidney Int 2007;71:201–9. doi: 10.1038/sj.ki.5002035.CrossRefPubMedGoogle Scholar
  10. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996;382:448–52. doi: 10.1038/382448a0.CrossRefPubMedGoogle Scholar
  11. Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, et al. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 1999;14:2015–26. doi: 10.1359/jbmr.1999.14.12.2015.CrossRefPubMedGoogle Scholar
  12. Follmar KE, Decroos FC, Prichard HL, Wang HT, Erdmann D, Olbrich KC. Effect of glutamine, glucose, and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells. Tissue Eng 2006;12:3525–33. doi: 10.1089/ten.2006.12.3525.CrossRefPubMedGoogle Scholar
  13. Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 2006;207:331–9. doi: 10.1002/jcp.20571.CrossRefPubMedGoogle Scholar
  14. Hassell T, Gleave S, Butler M. Growth inhibition in animal cell culture: the effect of lactate and ammonia. Appl Biochem Biotechnol 1991;30:29–41. doi: 10.1007/BF02922022.CrossRefPubMedGoogle Scholar
  15. Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 2004;22:313–23. doi: 10.1634/stemcells.22-3-313.CrossRefPubMedGoogle Scholar
  16. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 1997;36:17–28. doi: 10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O.CrossRefPubMedGoogle Scholar
  17. Javazon EH, Colter DC, Schwarz EJ, Prockop DJ. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells 2001;19:219–25. doi: 10.1634/stemcells.19-3-219.CrossRefPubMedGoogle Scholar
  18. Karp JM, Shoichet MS, Davies JE. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res A 2003;64:388–96. doi: 10.1002/jbm.a.10420.CrossRefPubMedGoogle Scholar
  19. Kaysinger KK, Ramp WK. Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem 1998;68:83–9. doi: 10.1002/(SICI)1097-4644(19980101)68:1<83::AID-JCB8>3.0.CO;2-S.CrossRefPubMedGoogle Scholar
  20. Kohn DH, Sarmadi M, Helman JI, Krebsbach PH. Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. J Biomed Mater Res 2002;60:292–9. doi: 10.1002/jbm.10050.CrossRefPubMedGoogle Scholar
  21. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000;49:328–37. doi: 10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q.CrossRefPubMedGoogle Scholar
  22. Kromenaker SJ, Srienc F. Effect of lactic acid on the kinetics of growth and antibody production in a murine hybridoma: secretion patterns during the cell cycle. J Biotechnol 1994;34:13–34. doi: 10.1016/0168-1656(94)90162-7.CrossRefPubMedGoogle Scholar
  23. Lao MS, Toth D. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol Prog 1997;13:688–91. doi: 10.1021/bp9602360.CrossRefPubMedGoogle Scholar
  24. Lee IC, Wang JH, Lee YT, Young TH. The differentiation of mesenchymal stem cells by mechanical stress or/and co-culture system. Biochem Biophys Res Commun 2007;352:147–52. doi: 10.1016/j.bbrc.2006.10.170.CrossRefPubMedGoogle Scholar
  25. McQueen A, Bailey JE. Growth inhibition of hybridoma cells by ammonium ion: correlation with effects on intracellular pH. Bioprocess Eng 1991;6:49–61. doi: 10.1007/BF00369278.CrossRefGoogle Scholar
  26. Morikawa K, Ikeda C, Nonaka M, Suzuki I. Growth arrest and apoptosis induced by quercetin is not linked to adipogenic conversion of human preadipocytes. Metabolism 2007;56:1656–65. doi: 10.1016/j.metabol.2007.07.008.CrossRefPubMedGoogle Scholar
  27. Nakajima I, Muroya S, Chikuni K. Growth arrest by octanoate is required for porcine preadipocyte differentiation. Biochem Biophys Res Commun 2003;309:702–8. doi: 10.1016/j.bbrc.2003.08.057.CrossRefPubMedGoogle Scholar
  28. Nicoll SB, Wedrychowska A, Smith NR, Bhatnagar RS. Modulation of proteoglycan and collagen profiles in human dermal fibroblasts by high density micromass culture and treatment with lactic acid suggests change to a chondrogenic phenotype. Connect Tissue Res 2001;42:59–69. doi: 10.3109/03008200109014249.CrossRefPubMedGoogle Scholar
  29. Omasa T, Higashiyama KI, Shioya S, Suga KI. Effects of lactate concentration on hybridoma culture in lactate-controlled fed-batch operation. Biotechnol Bioeng 1992;39:556–64. doi: 10.1002/bit.260390511.CrossRefPubMedGoogle Scholar
  30. Ozturk SS, Palsson BO. Effect of medium osmolarity on hybridoma growth, metabolism, and antibody production. Biotechnol Bioeng 1991;37:989–93. doi: 10.1002/bit.260371015.CrossRefPubMedGoogle Scholar
  31. Ozturk SS, Riley MR, Palsson BO. Effect of ammonia and lactate on hybridoma growth, metabolism, and antibody production. Biotechnol Bioeng 1992;39:418–31. doi: 10.1002/bit.260390408.CrossRefPubMedGoogle Scholar
  32. Patel SD, Papoutsakis ET, Winter JN, Miller WM. The lactate issue revisited: novel feeding protocols to examine inhibition of cell proliferation and glucose metabolism in hematopoietic cell cultures. Biotechnol Prog 2000;16:885–92. doi: 10.1021/bp000080a.CrossRefPubMedGoogle Scholar
  33. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration. Nat Biotechnol 2000;18:959–63. doi: 10.1038/79449.CrossRefPubMedGoogle Scholar
  34. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 2002;20:530–41. doi: 10.1634/stemcells.20-6-530.CrossRefPubMedGoogle Scholar
  35. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003;33:919–26. doi: 10.1016/j.bone.2003.07.005.CrossRefPubMedGoogle Scholar
  36. Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 2004;32:1212–25. doi: 10.1016/j.exphem.2004.09.003.CrossRefPubMedGoogle Scholar
  37. Walton P, Cotton NJ. Long-term in vivo degradation of poly-l-lactide (PLLA) in bone. J Biomater Appl 2007;21:395–411. doi: 10.1177/0885328206065125.CrossRefPubMedGoogle Scholar
  38. Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F. Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol 2005;204:184–91. doi: 10.1002/jcp.20324.CrossRefPubMedGoogle Scholar
  39. Xiao G, Jiang D, Ge C, Zhao Z, Lai Y, Boules H, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 2005;280:30689–96. doi: 10.1074/jbc.M500750200.CrossRefPubMedGoogle Scholar
  40. Zhao F, Chella R, Ma T. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol Bioeng 2007;96:584–95. doi: 10.1002/bit.21184.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations