Cell Biology and Toxicology

, Volume 24, Issue 6, pp 573–586 | Cite as

Echinoderm regenerative response as a sensitive ecotoxicological test for the exposure to endocrine disrupters: effects of p,p′DDE and CPA on crinoid arm regeneration

  • Michela Sugni
  • Valentina Manno
  • Alice Barbaglio
  • Daniela Mozzi
  • Francesco Bonasoro
  • Paolo Tremolada
  • M. Daniela Candia Carnevali


Echinoderms are valuable test species in marine ecotoxicology and offer a wide range of biological processes appropriate for this approach. Regenerating echinoderms can be regarded as amenable experimental models for testing the effects of exposure to contaminants, particularly endocrine disrupter compounds (EDCs). As regeneration is a typical developmental process, physiologically regulated by humoral mechanisms, it is highly susceptible to the action of pseudo-hormonal contaminants which appear to be obvious candidates for exerting deleterious actions. In our laboratory experiments, selected EDCs suspected for their antiandrogenic action (p,p′-DDE and cyproterone acetate) were tested at low concentrations on regenerating specimens of the crinoid Antedon mediterranea. An integrated approach which combines exposure experiments and different morphological analyses was employed; the obtained results suggest an overall pattern of plausible endocrine disruption in the exposed samples, showing that processes such as regenerative growth, histogenesis, and differentiation are affected by the exposure to the selected compounds. These results confirm that (1) regenerative phenomena of echinoderms can be considered valuable alternative models to assess the effects of exposure to exogenous substances such as EDCs, and (2) these compounds significantly interfere with fundamental processes of developmental physiology (proliferation, differentiation, etc…) plausibly via endocrine alterations. In terms of future prospects, taking into account the increasing need to propose animal models different from vertebrates, echinoderms represent a group on which ecotoxicological studies should be encouraged and specifically addressed.


Regeneration Invertebrates Hormonal dysfunction EDC contaminants Ecotoxicological model 



The present work was carried out with the financial support provided by (1) EU (COMPRENDO Project n° EVK1-CT-2002-00129) and (2) MIUR COFIN-2006 Research Project. In addition, the authors are particularly grateful to Prof. Silvana Galassi and Dr Marco Merlin for their indispensable help and valuable collaboration in the research work.


  1. Angelini C, Aluigi MG, Sgro M, Trombino S, Thielecke H, Falugi C. Cell signalling during sea urchin development: a model for assessing toxicity of environmental contaminants. In: Matranga V, editor. Echinodermata, progress in molecular and subcellular biology, subseries marine molecular biotechnology. Berlin, Germany: Springer; 2005. p. 45–70.Google Scholar
  2. Bacci E, Gaggi C. Bioconcentrazione. bioaccumulo e biomagnificazione. In: Vighi M, Bacci E, editors. Ecotossicologia. Torino: UTET; 1998. p. 141–52.Google Scholar
  3. Barbaglio A, Mozzi D, Sugni M, Tremolada P, Bonasoro F, Lavado R, et al. Effects of exposure to ED contaminants (TPT-Cl and Fenarimol) on crinoid echinoderms: comparative analysis of regenerative development and correlated steroid levels. Mar Biol 2006;149(1):65–77.CrossRefGoogle Scholar
  4. Barradell LB, Faulds D. Cyproterone. A review of its pharmacology and therapeutic efficacy in prostate cancer. Drugs Aging 1994;5(1):59–80.PubMedGoogle Scholar
  5. Becker DM, Hull Sieg C. Eggshell quality and organochlorine residues in eggs of merlins, Falco columbarius, in Southeastern Montana. Can Field Nat 1987;101(3):369–72.Google Scholar
  6. Bradford JM. The hormonal treatment of sexual offenders. Bull Am Acad Psychiatry Law 1983;11(2):159–69.PubMedGoogle Scholar
  7. Candia Carnevali MD. Regenerative response and endocrine disrupters in crinoid Echinoderms: an old experimental model, a new ecotoxicological test. In: Matranga V, editor. Echinodermata, progress in molecular and subcellular biology, subseries marine molecular biotechnology. Berlin, Germany: Springer; 2005. p. 167–99.Google Scholar
  8. Candia Carnevali MD. Regeneration in Echinoderms: repair, regrowth, cloning. ISJ 2006;3:64–76.Google Scholar
  9. Candia Carnevali MD, Bonasoro F. Microscopic overview of crinoid regeneration. Microsc Res Tech 2001;55:403–26.PubMedCrossRefGoogle Scholar
  10. Candia Carnevali MD, Bonasoro F, Lucca E, Thorndyke MC. Pattern of cell proliferation in the early stages of arm regeneration in the feather star Antedon mediterranea. J Exp Zool 1995;272:464–74.CrossRefGoogle Scholar
  11. Candia Carnevali MD, Bonasoro F, Patruno M, Thorndyke MC, Galassi S. PCB exposure and regeneration in crinoids (Echinodermata). Mar Ecol Prog Ser 2001;215:155–67.CrossRefGoogle Scholar
  12. Candia Carnevali MD, Bonasoro F, Ferreri P, Galassi S. Regenerative potential and effects of exposure to pseudo-estrogenic contaminants (4-nonylphenol) in the crinoid Antedon mediterranea. In: Feral JP, editor. Echinoderm research 2001. Rotterdam, The Netherlands: Balkema Press; 2003. p. 201–7.Google Scholar
  13. de Fur PL, Crane M, Tattersfield L, Ingersoll CG, Stahl R, Matthiessen P, et al. Introduction to EDIETA Workshop. In: de Fur PL, Crane M, Ingersoll C, Tattersfield L, editors. Endocrine disruption in invertebrates: endocrinology, testing and assessment. Pensacola, The Netherlands: SETAC Press; 1999.Google Scholar
  14. De Waal M, Poortman J, Voogt PA. Steroid receptors in invertebrates. A specific 17β-oestradiol binding protein in a seastar. Mar Biol Lett 1982;3:317–23.Google Scholar
  15. den Besten PJ. Cytocrome P450 monoxygenase system in echinoderms. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1998;121:139–46.PubMedCrossRefGoogle Scholar
  16. Dorfman RI. Biological activity of antiandrogens. Br J Dermatol 1970;82:3–8.CrossRefGoogle Scholar
  17. Guillette LJ, Gross TS, Masson GR, Matter JM, Percival HF, Woodward AR. Development abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect 1994;102:680–8.PubMedCrossRefGoogle Scholar
  18. Heinzeller T, Welsh U. Crinoidea. In: Herrison FW, Chia FS, editors. Microscopic anatomy of invertebrates. Echinodermata, vol 14. New York: Wiley-Liss; 1994. p. 9–148.Google Scholar
  19. Hickey JJ, Anderson DW. Chlorinated hydrocarbons and eggshell changes in raptorial and fish-eating birds. Science 1968;162:271–3.PubMedCrossRefGoogle Scholar
  20. Hinton DE. Histological responses signifying exposure or effect ad their application to aquatic ecotoxicology. In: Zelikoff JT, editor. Proceedings of the OECD workshop on ecotoxicology: responses, biomarkers and risk assessment. Fairhaven, New Jersey: SOS Publications; 1997.Google Scholar
  21. Jenssen BM. An overview of exposure to, and effects of petroleum oil and organochlorine pollution in grey seals (Halichoerus grypus). Sci Total Environ 1996;186:109–19.PubMedCrossRefGoogle Scholar
  22. Kang IH, Kim HS, Shin JH, Kim TS, Moon HJ, Kim IY, et al. Comparison of anti-androgenic activity of flutamide, vinclozolin, procymidone, linuron, and, p,p′DDE in rodent 10-day Hershberger assay. Toxicology 2004;199:145–59.PubMedCrossRefGoogle Scholar
  23. Kannan K, Corsolini S, Imagawa T, Focardi S, Giesy J. Polychlorinated –Naphtalenes, –Biphenyls, –Dibenzo-p-dioxins and –Dibenzofurans in bluefin tuna, swordfish, cormorants and swallows from Italy. Organohalogen Compd 2001;52:374–7.Google Scholar
  24. Kelce WR, Wilson EM. Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications. J Mol Med 1997;75:198–207.PubMedCrossRefGoogle Scholar
  25. Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM. Persistent DDT metabolite p,p′DDE is a potent androgen receptor antagonist. Nature 1995;375:581–5.PubMedCrossRefGoogle Scholar
  26. Kelce WR, Lambright CR, Gray LE Jr, Roberts KP. Vinclozolin and p,p′DDE alter androgen-dependent gene expression: in vivo confirmation of an androgen receptor-mediated mechanism. Toxicol Appl Pharmacol 1997;142(1):192–200.PubMedCrossRefGoogle Scholar
  27. Kiparissis Y, Metcalfe TL, Balch GC, Metcalfe CD. Effects of the antiandrogens, vinclozolin and cyproterone acetate on gonadal development in the Japanese medaka (Oryzias latipes). Aquat Toxicol 2003;63:391–403.PubMedCrossRefGoogle Scholar
  28. Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O’Brien CA, et al. Reversal of bone loss in mice by nongenotropic signalling of sex steroid. Science 2002;298:843–6.PubMedCrossRefGoogle Scholar
  29. Kuhnz W, Staks T, Jütting G. Pharmacokinetics of cyproterone acetate and ethinylestradiol in 15 women who received a combination oral contraceptive during three treatment cycles. Contraception 1993;48(6):557–75.PubMedCrossRefGoogle Scholar
  30. Lavado R, Barbaglio A, Candia Carnevali MD, Porte C. Steroid levels in crinoid echinoderms are altered by exposure to model endocrine disruptors. Steroids 2006a;71:489–97.CrossRefGoogle Scholar
  31. Lavado R, Sugni M, Candia Carnevali MD, Porte C. Triphenyltin alters androgen metabolism in the sea urchin Paracentrotus lividus. Aquat Toxicol 2006b;79:247–56.CrossRefGoogle Scholar
  32. Le Blanc GA, Campbell PM, den Besten P, Brown RP, Changs ES, Coats JR, et al. The endocrinology of invertebrates. In: de Fur PL, Crane M, Ingersoll C, Tattersfield L, editors. Proceedings of the workshop on endocrine disruption in invertebrates: endocrinology, testing and assessment. Noordwijkerhout, The Netherlands: SETAC Press; 1999. p. 23–106.Google Scholar
  33. Lorenzo J. A new hypothesis for how sex steroid hormones regulate bone mass. J Clin Invest 2003;111:1641–3.PubMedGoogle Scholar
  34. Lutz I, Sugni M, Candia Carnevali MD, Lavado R, Porte C, Sculte-Oehlmann U, et al. First evidence for specific [3H]-testosterone and [3H]-estradiol binding sites in echinoderms. Proceedings of the CREDO cluster workshop on the “Ecological relevance of chemically induced endocrine disruption in wildlife”. 2004, p. 43.Google Scholar
  35. Maugh TH. Chemicals: how many are there. Science 1987;199:162.CrossRefGoogle Scholar
  36. Neumann F. Pharmacology and potential use of cyproterone acetate. Horm Metab Res 1977;9(1):1–13.PubMedCrossRefGoogle Scholar
  37. Neumann F, Schleusener A, Albring M. Pharmacology of antiandrogens. In: Hammerstein J, Lachnit-Fixson U, Neumann F, Plewig G, editors. Androgenization in women. Amsterdam: Excerpta Medica; 1980. p. 147–92.Google Scholar
  38. Oehlmann J, Schulte-Oehlmann U. Endocrine disruption in invertebrates. Pure Appl Chem 2003;75(11–12):2207–18.CrossRefGoogle Scholar
  39. Rai U, Haider S. Effects of cyproterone acetate on FSH and testosterone influenced spermatogenesis, steroidogenesis and epididymis in the Indian wall lizard, Hemidactylus flaviviridis (Ruppell). Eur J Morphol 1995;33(5):443–55.PubMedGoogle Scholar
  40. Rastogi RK, Chieffi G. The effects of antiandrogens and antiestrogens in nonmammalian vertebrates. Gen Comp Endocrinol 1975;26(1):79–91.PubMedCrossRefGoogle Scholar
  41. Rennie PS, Bruchovsky N, Goldenberg SL, Lawson D, Fletcher T, Foekens JA. Relative effectiveness of alternative androgen withdrawal therapies in initiating regression of rat prostate. J Urol 1988;139(6):1337–42.PubMedGoogle Scholar
  42. Roepke TA, Snyder MJ, Cherr GN. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations. Aquat Toxicol 2005;71:155–73.PubMedCrossRefGoogle Scholar
  43. Rouse EF, Coppenger CJ, Barnes PR. The effect of an androgen inhibitor on behavior and testicular morphology in the stickleback Gasterosteus aculeatus. Horm Behav 1977;9(1):8–18.PubMedCrossRefGoogle Scholar
  44. Schröder HC, Di Bella G, Janipour N, Bonaventura R, Russo R, Müller WEG, Matranga V. DNA damage and developmental defects after exposure to UV and heavy metals in sea urchin cells and embryos compared to other invertebrates. In: Matranga V, editor. Echinodermata, progress in molecular and subcellular biology, subseries marine molecular biotechnology. Berlin, Germany: Springer; 2005. p. 45–70.Google Scholar
  45. Sohoni P, Sumpter JP. Several environmental oestrogens are also anti-androgens. J Endocrinol 1998;158:327–39.PubMedCrossRefGoogle Scholar
  46. Stefanelli P, Ausili A, Di Muccio A, Fossi C, Di Muccio S, Rossi S, et al. Organochlorine compounds in tissues of swordfish (Xiphias gladius) from Mediterranean Sea and Azores islands. Mar Pollut Bull 2004;49(11–12):938–50.PubMedCrossRefGoogle Scholar
  47. Sugni M, Mozzi D, Barbaglio A, Bonasoro F, Candia Carnevali MD. Endocrine disrupting compounds and echinoderms: new ecotoxicological sentinels for the marine ecosystem. Ecotoxicology 2007;16:95–108.PubMedCrossRefGoogle Scholar
  48. Sugni M, Wilkie IC, Burighel P, Candia Carnevali MD. New evidence of serotonin involvement in the neurohumoral control of crinoid arm regeneration. J Invert Biol. 2008 (in press).Google Scholar
  49. Thorndyke MC, Candia Carnevali MD. Regeneration neurohormones and growth factors in echinoderms. Can J Zool 2001;79:1171–208.CrossRefGoogle Scholar
  50. Tillmann M, Schulte-Oehlmann U, Duft M, Markert B, Oehlmann J. Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part III: cyproterone acetate and vinclozolin as antiandrogens. Ecotoxicology 2001;10:373–88.PubMedCrossRefGoogle Scholar
  51. Vega Matuszczyk JV, Larsson K. Sexual preference and feminine and masculine sexual behavior of male rats prenatally exposed to antiandrogen or antiestrogen. Horm Behav 1995;29(2):191–206.PubMedCrossRefGoogle Scholar
  52. Walsh GE, McLaighlin LL, Louie MK, Deans CH, Lores EM. Inhibition of arm regeneration by Ophioderma brevispina (Echinodermata, Ofiuroidea) by tributyltin oxide and triphenyltin oxide. Ecotoxicol Environ Saf 1986;12:95–100.PubMedCrossRefGoogle Scholar
  53. Wasson KM, Gower BA, Hines GA, Watts SA. Levels of progesterone, testosterone and estradiol, and androstenedione metabolism in the gonads of Lytechinus variegatus (Echinodermata: Echinoidea). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 2000;126:153–65.CrossRefGoogle Scholar
  54. Watts SA, Hines GA, Byrum CA, McClintock JB, Marion KR. Tissue- and species-specific variations in androgen metabolism. In: David B, Guille A, Feral JP, Roux M, editors. Echinoderms through time. Rotterdam, The Netherlands: Balkema Press; 1994. p. 155–61.Google Scholar
  55. You L, Sar M, Bartolucci E, Ploch S, Whitt M. Induction of hepatic aromatase by p,p′-DDE in adult male rats. Mol Cell Endocrinol 2001;178:207–14.PubMedCrossRefGoogle Scholar
  56. Zou E. Current status of environmental endocrine disruption in selected aquatic invertebrates. Acta Zool Sinica 2003;49(5):551–65.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Michela Sugni
    • 1
  • Valentina Manno
    • 1
  • Alice Barbaglio
    • 1
  • Daniela Mozzi
    • 1
  • Francesco Bonasoro
    • 1
  • Paolo Tremolada
    • 1
  • M. Daniela Candia Carnevali
    • 1
  1. 1.Dipartimento di BiologiaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations