Skip to main content
Log in

PU.1 phosphorylation correlates with hydroquinone-induced alterations in myeloid differentiation and cytokine-dependent clonogenic response in human CD34+ hematopoietic progenitor cells

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The transcriptional regulatory factor PU.1 is important for the regulation of a diverse group of hematopoietic and myeloid genes. Posttranslational phosphorylation of PU.1 has been demonstrated in the regulation of a variety of promoters in normal cells. In leukemia cells, differing patterns of PU.1 phosphorylation have been described among acute myelogenous leukemia (AML) subtypes. Therefore, we hypothesized that modulation of PU.1-dependent gene expression might be a molecular mediator of alterations in myeloid cell growth and differentiation that have been demonstrated to be early events in benzene-induced leukemogenesis. We found that freshly isolated human CD34+ hematopoietic progenitor cells (HPC) exhibit multiple PU.1-DNA binding species that represent PU.1 proteins in varying degrees of phosphorylation states as determined by phosphatase treatment in combination with electrophoretic mobility shift assay (EMSA). Maturation of granulocyte and monocyte lineages is also accompanied by distinct changes in PU.1-DNA binding patterns. Experiments reveal that increasing doses of the benzene metabolite, hydroquinone (HQ) induce a time-and dose-dependent alteration in the pattern of PU.1-DNA binding in cultured human CD34+ cells, corresponding to hyperphosphorylation of the PU.1 protein. HQ-induced alterations in PU.1-DNA binding are concomitant with a sustained immature CD34+ phenotype and cytokine-dependent enhanced clonogenic activity in cultured human HPC. These results suggest that HQ induces a dysregulation in the external signals modulating PU.1 protein phosphorylation and this dysregulation may be an early event in the generation of benzene-induced AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADCC:

antibody dependent cell-mediated cytotoxicity

C/EBP:

ccaat/enhancer binding protein

CFU:

colony-forming unit

FITC:

fluorescein isothiocyanate

G-CSF:

granulocyte colony-stimulating factor

GM-CFU:

granulocyte/macrophage colony-forming units

GM-CSF:

granulocyte/macrophage colony-stimulating factor

HQ:

hydroquinone

IL-3:

interleukin 3

M-CSF:

macrophage colony-stimulating factor

MNC:

mononuclear cells

NF-κB:

nuclear factor kappa B

PAP assay:

potato acid phosphatase assay

PE:

phycoerythrin

PerCp:

peridinin chlorophyll protein

pRb:

retinoblastoma protein

SCF:

stem cell factor

TBP:

TATA-binding protein

References

  • Behre G, Whitmarsh AJ, Coghlan MP, et al. c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J Biol Chem. 1999;274:4939–46.

    Article  PubMed  CAS  Google Scholar 

  • Borregaard N, Theilgaard-Monch K, Sorensen OE, Cowland JB. Regulation of human neutrophil granule protein expression. Curr Opin Hematol. 2001;8:23–7.

    Article  PubMed  CAS  Google Scholar 

  • Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene. 2002;21:3368–76.

    Article  PubMed  CAS  Google Scholar 

  • Carey JO, Posekany KJ, deVente JE, Pettit GR, Ways DK. Phorbol ester-stimulated phosphorylation of PU.1: Association with leukemic cell growth inhibition. Blood. 1996;87:4316–24.

    PubMed  CAS  Google Scholar 

  • Celada A, Borras FE, Soler C, et al. The transcription factor PU.1 is involved in macrophage proliferation. J Exp Med. 1996;184:61–9.

    Article  PubMed  CAS  Google Scholar 

  • Colagiovanni DB, Stillman WS, Irons RD. Chemical suppression of a subpopulation of primitive hematopoietic progenitor cells: 1,3-butadiene produces a hematopoietic defect similar to Steel or White Spotted mutations in mice. Proc Natl Acad Sci USA. 1993;90:2803–6.

    Article  PubMed  CAS  Google Scholar 

  • Cronkite EP, Drew RT, Inoue T, Hirabayashi Y, Bullis JE, Hematotoxicity and carcinogenicity of inhaled benzene. Environ Health Perspect 1989;82:97–108.

    PubMed  CAS  Google Scholar 

  • Cuneo A, Fagioli F, Pazzi I, et al. Morphologic, immunologic and cytogenetic studies in acute myeloid leukemia following occupational exposure to pesticides and organic solvents. Leuk Res. 1992;16:789–96.

    Article  PubMed  CAS  Google Scholar 

  • Dahl R, Simon MC. The importance of PU.1 concentration in hematopoietic lineage commitment and maturation. Blood Cells Mol Dis. 2003;31:229–33.

    Article  PubMed  CAS  Google Scholar 

  • DeKoter RP, Walsh JC, Singh H. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/ macrophage progenitors. EMBO J. 1998;17:4456–68.

    Article  PubMed  CAS  Google Scholar 

  • Delgado MD, Hallier M, Meneceur P, Tavitian A, Moreau-Gachelin F. Inhibition of Friend cells proliferation by spi-1 antisense oligodeoxynucleotides. Oncogene. 1994;9:1723–7.

    PubMed  CAS  Google Scholar 

  • Dempster AM, Snyder CA. Kinetics of granulocyte and erythroid progenitor cells are affected differently by short-term, low-level benzene exposure. Arch Toxicol 1991;65:556–61.

    Article  PubMed  CAS  Google Scholar 

  • Du J, Stankiewicz MJ, Liu Y, et al. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem. 2002;277:43481–94.

    Article  PubMed  CAS  Google Scholar 

  • Eichbaum QG, Iyer R, Raveh DP, Mathieu C, Ezekowitz RA. Restriction of interferon gamma responsiveness and basal expression of the myeloid human Fc gamma R1b gene is mediated by a functional PU.1 site and a transcription initiator consensus. J Exp Med. 1994;179:1985–96.

    Article  PubMed  CAS  Google Scholar 

  • Eisbacher M, Holmes ML, Newton A, et al. Protein–protein Interaction between Fli-1 and GATA-1 mediates synergistic expression of megakaryocytic-specific genes through cooperative DNA binding. Mol Cel Biol. 2003;23(10):3427–41.

    Article  CAS  Google Scholar 

  • Fisher RC, Scott EW. Role of PU.1 in hematopoiesis. Stem Cells. 1998;16:25–37.

    PubMed  CAS  Google Scholar 

  • Ford AM, Bennett CA, Healy LE, Towatari M, Greaves MF, Enver T. Regulation of the myeloperoxidase enhancer binding proteins Pu1, C-EBPα, -β, and -δ during granulocyte-lineage specification. Proc Natl Acad Sci USA. 1996;93:10838–43.

    Article  PubMed  CAS  Google Scholar 

  • Golomb HM, Alimena G, Rowley JD, Vardiman JW, Testa JR, Sovik C. Correlation of occupation and karyotype in adults with acute nonlymphocytic leukemia. Blood. 1982;60:404–11.

    PubMed  CAS  Google Scholar 

  • Gross S, Helm K, Gruntmeir J, Stillman W, Irons RD. Characterization and phenotypic analysis of differentiating CD34+ human bone marrow cells in liquid culture. Eur J Haematol. 1997;59:318–26.

    Article  PubMed  CAS  Google Scholar 

  • Heydemann A, Juang G, Hennessy K, Parmacek MS, Simon MC. The myeloid-cell-specific c-fes promoter is regulated by Sp1, PU.1, and a novel transcription factor. Mol Cell Biol. 1996;16:1676–86.

    PubMed  CAS  Google Scholar 

  • Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang D-E, Tenen DG. PU.1 (SPI-1) and C/EBPα regulate expression of the granulocyte macrophage colony-stimulating factor receptor α gene. Mol Cell Biol. 1995;15:5830–45.

    PubMed  CAS  Google Scholar 

  • Iida H, Towatari M, Iida M, et al. Protein expression and constitutive phosphorylation of hematopoietic transcription factors PU.1 and C/EBP beta in acute myeloid leukemia blasts. Int J Hematol. 2000;71:153–8.

    PubMed  CAS  Google Scholar 

  • Irons RD. Benzene-induced myelotoxicity: application of flow cytofluorometry for the evaluation of early proliferative change in bone marrow. Environ Health Perspect. 1981;39:39–49.

    PubMed  CAS  Google Scholar 

  • Irons RD, Stillman WS. Cell proliferation and differentiation in chemical leukemogenesis. Stem Cells. 1993;11:235–42.

    Article  PubMed  CAS  Google Scholar 

  • Irons RD, Stillman WS. The effects of benzene and other leukaemogenic agents on haematopoietic stem and progenitor cell differentiation. Eur J Haematol. 1996a;57(Supplement 60):119–24.

    Google Scholar 

  • Irons RD, Stillman WS. Impact of benzene metabolites on differentiation of bone marrow progenitor cells. Environ Health Perspect. 1996b;104(Supplement 6):1247–50.

    CAS  Google Scholar 

  • Irons RD, Stillman WS. The process of leukemogenesis. Environ Health Perspect. 1996c;104:1239–46.

    CAS  Google Scholar 

  • Irons RD, Stillman WS, Colagiovanni DB, Henry VA. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro. Proc Natl Acad Sci USA. 1992;89:3691–5.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Okuno Y, Zhang P, et al. Regulation of the PU.1 gene by distal elements. Blood. 2001;98:2958–65.

    Article  PubMed  CAS  Google Scholar 

  • Lodie TA, Savedra R Jr, Golenbock DT, Van Beveren CP, Maki RA, Fenton MJ. Stimulation of macrophages by lipopolysaccharide alters the phosphorylation state, conformation, and function of PU.1 via activation of casein kinase II. J Immunol. 1997;158:1848–56.

    PubMed  CAS  Google Scholar 

  • Mao C, Ray-Gallet D, Tavitian A, Moreau-Gachelin F. Differential phosphorylations of Spi-B and Spi-1 transcription factors. Oncogene. 1996;12:863–73.

    PubMed  CAS  Google Scholar 

  • Marden CM, Stefanidis D, Cunninghame-Graham DS, Casimir CM. Differentiation-dependent up-regulation of p47(phox) gene transcription is associated with changes in PU.1 phosphorylation and increased binding affinity. Biochem Biophys Res Commun. 2003;305:193–202.

    Article  PubMed  CAS  Google Scholar 

  • McIvor Z, Hein S, Fiegler H, et al. Transient expression of PU.1 commits multipotent progenitors to a myeloid fate whereas continued expression favors macrophage over granulocyte differentiation. Exp Hematol. 2003;31:39–47.

    Article  PubMed  CAS  Google Scholar 

  • Nerlov C, Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 1998;12:2403–12.

    PubMed  CAS  Google Scholar 

  • Nerlov C, Querfurth E, Kulessa H, Graf T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood. 2000;95:2543–51.

    PubMed  CAS  Google Scholar 

  • Perez C, Coeffier E, Moreau-Gachelin F, Wietzerbin J, Benech PD. Involvement of the transcription factor PU.1/Spi-1 in myeloid cell-restricted expression of an interferon-inducible gene encoding the human high-affinity Fcγ receptor. Mol Cell Biol. 1994;14:5023–31.

    PubMed  CAS  Google Scholar 

  • Pongubala JMR, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML. PU.1 recruits a second nuclear factor to a site important for immunoglobulin κ 3' enhancer activity. Mol Cell Biol. 1992;12:368–78.

    PubMed  CAS  Google Scholar 

  • Ray-Gallet D, Mao C, Tavitian A, Moreau-Gachelin F. DNA binding specificties of Spi-1/PU.1 and Spi-B transcription factors and identification of a SPi-1/Spi-B binding site in the c-fes/c-fps promoter. Oncogene. 1995;11:303–13.

    PubMed  CAS  Google Scholar 

  • Reddy VA, Iwana A, Iotzova G, et al. Granulocyte inducer C/EBPα inactivates the myeloid master regulator PU.1: possible role in lineage commitment decisions. Blood. 2002;100:483–90.

    Article  PubMed  CAS  Google Scholar 

  • Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev. 1999;13:1398–411.

    PubMed  CAS  Google Scholar 

  • Rieske P, Pongubala JM. AKT induces transcriptional activity of PU.1 through phosphorylation-mediated modifications within its transactivation domain. J Biol Chem. 2001;276:8460–8.

    Article  PubMed  CAS  Google Scholar 

  • Rosmarin AG, Caprio D, Levy R, Simkevich C. CD18 (β2 leukocyte integrin) promoter requires PU.1 transcription factor for myeloid activity. Proc Natl Acad Sci USA. 1995;92:801–5.

    Article  PubMed  CAS  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science. 1994;265:1573–7.

    PubMed  CAS  Google Scholar 

  • Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG. PU.1 (Spi-1) and C/EBPα regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood. 1996;88:1234–47.

    PubMed  CAS  Google Scholar 

  • Srikanth S, Rado, TA. PU.1 regulates the expression of the human neutrophil elastase gene. Biochim Biophys Acta. 1998;1398:215–23.

    PubMed  CAS  Google Scholar 

  • Voso MT, Burn TC, Wulf G, Lim B, Leone G, Tenen DG. Inhibition of hematopoiesis by competitive binding of transcription factor PU.1. Proc Natl Acad Sci USA. 1994;91: 7932–6.

    Article  PubMed  CAS  Google Scholar 

  • Wang JM, Lai MZ, Yang-Yen HF. Interleukin-3 stimulation of mcl-1 gene transcription involves activation of the PU.1 transcription factor through a p38 mitogen-activated protein kinase-dependent pathway. Mol Cell Biol. 2003;23:1896–909.

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Alford P, Shackelford RE. Protein kinase C activation increases binding of transcription factor PU.1 in murine tissue macrophages. Biochem Biophys Res Commun. 1999;254:211–4.

    Article  PubMed  CAS  Google Scholar 

  • Zhang D-E, Fujioka K-I, Hetherington CJ, et al. Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol. 1994;14:8085–95.

    PubMed  CAS  Google Scholar 

  • Zhang P, Behre G, Pan J, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA. 1999;96:8705–10.

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Zhang XB, Iwama A, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood. 2000;96:2641–48.

    PubMed  CAS  Google Scholar 

  • Zhang P, Nelson E, Radomska HS, et al. Induction of granulocytic differentiation by 2 pathways. Blood. 2002;99:4406–12.

    Article  PubMed  CAS  Google Scholar 

  • Zheng JH, Pyatt DW, Gross SA, Le AT, Kerzic PJ, Irons RD. Hydroquinone modulates the GM-CSF signaling pathway in TF-1 cells. Leukemia. 2004;18(7):1296–304.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Irons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, S.A., Zheng, J.H., Le, A.T. et al. PU.1 phosphorylation correlates with hydroquinone-induced alterations in myeloid differentiation and cytokine-dependent clonogenic response in human CD34+ hematopoietic progenitor cells. Cell Biol Toxicol 22, 229–241 (2006). https://doi.org/10.1007/s10565-006-0128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0128-7

Keywords

Navigation