Skip to main content

Advertisement

Log in

Catalytic Hydrogenation of Levulinic Acid into Gamma-Valerolactone Over Ni/HZSM-5 Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A series of Ni/HZSM-5 catalysts with different Ni-loadings and Si/Al ratios were prepared by incipient wetness impregnation and employed for catalytic hydrogenation of levulinic acid (LA) to gamma-valerolactone (GVL). Their physicochemical properties were characterized by X-ray diffraction, nitrogen adsorption–desorption, X-ray photoelectron spectrometer, temperature-programmed desorption of ammonia,transmission electron microscopy, temperature-programmed reduction of hydrogen, and pyridine-adsorbed infrared spectroscopy. The diffraction peaks assigned to Ni phase were not observed, implying that nickel particles were small and had a high dispersion on the supports. The catalysts with a strong acidity and the appropriate ratio of Brönsted (B) acid sites to Lewis (L) acid sites (B/L = 4.9) show an excellent activity and selectivity for the hydrogenation of LA to GVL. High conversion of LA and selectivity towards GVL were achieved over 5 wt% Ni/HZSM-5-50. The maximum GVL yield of 100% over 5 wt% Ni/HZSM-5-50 was obtained under the optimized reaction conditions of 210 °C, 2 h, and 3 MPa initial hydrogen pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Murillo LI, López GM, Fierro JLG, Mariscal R (2016) Appl Catal B 185:141–149

    Article  CAS  Google Scholar 

  2. Romero A, Alonso E, Sastre Á, Nieto-Márquez A (2016) Micropor Mesopor Mater 224:1–8

    Article  CAS  Google Scholar 

  3. Zhang X, Zhang D, Sun Z, Xue L, Wang X, Jiang Z (2016) Appl Catal B 196:50–56

    Article  CAS  Google Scholar 

  4. Guo J, Zhu S, Cen Y, Qin Z, Wang J, Fan W (2017) Appl Catal B 200:611–619

    Article  CAS  Google Scholar 

  5. Song S, Di L, Wu G, Dai W, Guan N, Li L (2017) Appl Catal B 205:393–403

    Article  CAS  Google Scholar 

  6. Palkovits R, Tajvidi K, Ruppert AM, Procelewska J (2011) Chem Commun 47:576–578

    Article  CAS  Google Scholar 

  7. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  8. Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R (2014) Energy Environ Sci 7:1500–1523

    Article  CAS  Google Scholar 

  9. Luo W, Deka U, Beale AM, Van Eck ERH, Bruijnincx PCA, Weckhuysen BM (2013) J Catal 301:175–186

    Article  CAS  Google Scholar 

  10. Abdelrahman OA, Heyden A, Bond JQ (2014) ACS Catal 4:1171–1181

    Article  CAS  Google Scholar 

  11. Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L (2010) Angew Chem Int Ed 49:4479–4483

    Article  CAS  Google Scholar 

  12. Chia M, Dumesic JA (2011) Chem Commun 47:12233–12235

    Article  CAS  Google Scholar 

  13. Du XL, He L, Zhao S, Liu YM, Cao Y, He HY (2011) Angew Chem Int Ed 50:7815–7819

    Article  CAS  Google Scholar 

  14. Geilen FM, Engendahl B, Holscher M, Klankermayer J, Leitner W (2011) J Am Chem Soc 133:14349–14358

    Article  CAS  PubMed  Google Scholar 

  15. Deuss PJ, Barta K, de Vries JG (2014) Catal Sci Technol 4:1174–1196

    Article  CAS  Google Scholar 

  16. Wettstein SG, Bond JQ, Alonso DM, Pham HN, Datye AK, Dumesic JA (2012) Appl Catal B 117:321–329

    Article  CAS  Google Scholar 

  17. Upare PP, Lee JM, Hwang DW, Halligudi SB, Hwang YK, Chang JS (2011) J Ind Eng Chem 17:287–292

    Article  CAS  Google Scholar 

  18. Yang Y, Gao G, Zhang X, Li FW (2014) ACS Catal 4:1419–1425

    Article  CAS  Google Scholar 

  19. Mohan V, Venkateshwarlu V, Pramod CV, Raju BD, Rao KSR (2014) Catal Sci Technol 4:1253–1259

    Article  CAS  Google Scholar 

  20. Morone A, Apte M, Pandey RA (2015) Renew Sust Energ Rev 51:548–565

    Article  CAS  Google Scholar 

  21. Alonso DM, Gallo JMR, Mellmer MA, Wettstein SG, Dumesic JA (2013) Catal Sci Technol 3:927–931

    Article  CAS  Google Scholar 

  22. Démolis A, Essayem N, Rataboul F (2014) ACS Sustain Chem Eng 2:1338–1352

    Article  CAS  Google Scholar 

  23. Wang W, Chen JG, Song LP, Liu ZT, Liu ZW, Lu J (2013) Energ Fuel 27:6339–6347

    Article  CAS  Google Scholar 

  24. Sun JY, Liu H (2014) Catal Today 234:75–82

    Article  CAS  Google Scholar 

  25. Chen LG, Li HW, Fu JY, Miao CL, Lv PM, Yuan ZH (2016) Catal Today 259:266–276

    Article  CAS  Google Scholar 

  26. Van Putten RJ, Van Der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, De Vries JG (2013) Chem Rev 113:1499–1597

    Article  CAS  PubMed  Google Scholar 

  27. Michel C, Zaffran J, Ruppert AM, Matras-Michalska J, Jedrzejczyk M, Grams J (2014) Chem Commun 50:12450–12453

    Article  CAS  Google Scholar 

  28. Song S, Yao SK, Cao JH, DI L, Wu GJ, Guan NJ (2017) Appl Catal B 217:115–124

    Article  CAS  Google Scholar 

  29. Miki N, Naonobu K (2013) Chem Rec 13:432–455

    Article  CAS  Google Scholar 

  30. Miki N, Naonobu K (1997) Catal Surv Jap 1:215–226

    Article  Google Scholar 

  31. Zang YH, Dong XF, Ping D, Dong CJ (2017) Cryst Eng Comm 19:3156–3166

    Article  CAS  Google Scholar 

  32. Zhao C, Yu YZ, Jentys A, Lercher JA (2013) Appl Catal B 132:282–292

    Article  CAS  Google Scholar 

  33. Sun P, Gao G, Zhao ZL, Xia CG, Li FW (2016) Appl Catal B 189:19–25

    Article  CAS  Google Scholar 

  34. Wright WR, Palkovits R (2012) ChemSusChem 5:1657–1667

    Article  CAS  PubMed  Google Scholar 

  35. Sun P, Gao G, Zhao ZL, Xia CG, Li FW (2014) ACS Catal 4:4136–4142

    Article  CAS  Google Scholar 

  36. Corbel-Demailly L, Ly BK, Minh DP, Tapin B, Especel C, Epro F, Cabiac A. Guillon E, Besson M, Pinel C (2013) ChemSusChem 6:2388–2395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (China University of Mining and Technology, 2017XKZD10),and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Peng Zhao or Xing Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 821 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhao, YP., Fan, X. et al. Catalytic Hydrogenation of Levulinic Acid into Gamma-Valerolactone Over Ni/HZSM-5 Catalysts. Catal Surv Asia 22, 129–135 (2018). https://doi.org/10.1007/s10563-018-9246-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-018-9246-5

Keywords

Navigation